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Introduction

Radial basis functions (RBF) are highly effective meshfree methods for the
solution of PDEs problems. These methods can be divided into global and
local techniques and have been applied to several fields, including:

Convection-diffusion, Chandhini (2007), Stevens (2009),

Naiver-Stokes, Chinchapatnam (2009),

atmospheric global electric circuit, Bayona (2010),

shallow water simulation, Flyer (2012),

reaction-diffusion on surfaces, Shankar (2015),

time-domain elastic wave propagation in 2D isotropic media,
Buhmann (2015),

heat flow, Buhmann (2017), among others.
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Introduction
Control problems

Within the context of the RBF theory, few works address the solution to these
problems:

Optimal control
Pearson∗. Poisson - Global collocation methods.

We†. Poisson and convection-diffusion - Local RBF methods with
extended precision.

Guan, Wang, Zhu. Elliptic PDEs. - Global collocation methods.

Controllabillity
Breton, González Casanova, Montoya‡. Stokes - Global collocation and
local methods.

∗Pearson, “A radial basis function method for solving PDE-constrained optimization problems”, Num. Alg. 64-3 (2013).
†González Casanova, Gout, Zavaleta, “Radial basis function methods for optimal control of the convection–diffusion equation: A

numerical study”, Eng. Anal. Bound. Elem. 108 (2019).
‡Breton, González Casanova, Montoya, “RBF collocation and hybrid–LHI methods for Stokes systems and its application to

controllability problems”, J. Comput. Appl. Math., Accepted, (2020).
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Introduction
Funciones de base radial

RBFs methods have the following advantages and limitations:

They are meshfree methods (scattered data in Rd , able to handle complex
boundaries, reduce numerical complexity).

Exponential convergence for some kerneles (high order).

Gram matrix have the same structure for all Rd (easy to program).

Exponential convergence implies exponential increase of the condition
number (uncertainty principle).

Extended precision (Kansa, Shaback).

Polyharmonic splines + polynomials (Bayona).

Hybrid Kernels (Mishra).
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Introduction

In this talk, we are going to give some insight into RBF methods with
hybrid kernels.

We are going to give some examples of their application to the numerical
solution of control problems, specifically:

Distributed optimal control problems.

Null controllability of Stokes equation.
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RBFs and hybrid kernels
Radial basis functions

Let X = {xxxk}nk=1 ⊂ D ⊂ Rd . An RBF interpolant is defined by

σ(xxx) =
n∑

k=1
λkφ(r(xxx − xxxk)) +

m∑
`=1

γ`p`(xxx),

with r := r(xxx) = ‖xxx‖ the euclidean norm Rd , φ : [0,∞) → R a RBF.
Also we could have Φ(xxx) = φ(‖xxx‖).
Imposing the conditions

σ(xxxk) = fk , (interpolation)
n∑

k=1
λkp`(xxxk) = 0, ` = 1, . . . ,m, (moment)

We get the algebraic system

Aωωω =
(

G P
PT O

)(
λλλ
γγγ

)
=
(
fff
000

)
= bbb.
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RBFs and hybrid kernels
Radial basis functions

Type of basis function Radial function φ(r)

Polyharmonic splines (PHS)

Radial powers (Odd) r2α−1, 0 < α ∈ N

Thin plate spline (Even) r2α log r 0 < α ∈ N

Gaussian (GA) e−(εr)2

Multiquadric (MQ)
√

(εr)2 + 1

Inverse multiquadric (IMQ) 1√
(εr)2 + 1

RBF with compact support several formulas

ε is the shape parameter
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RBFs and hybrid kernels
Radial basis functions
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Figure: Effect of the shape parameter on a Gaussian kernel
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RBFs and hybrid kernels
Radial basis functions

The following table, was taken from Koupaei et al.§, and shows a review of the
proposed strategies to find an “optimal” shape parameter.

Figure: Strategies to find an “optimal” shape parameter

§Koupaei et al., “Finding a good shape parameter of RBF to solve PDEs based on the
particle swarm optimization algorithm”, Alex. Eng. J. 57 (2018).
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RBFs and hybrid kernels
Hybrid kernels

Mishra et al.¶ introduced hybrid kernels (HK) which are a combination of
Gaussian kernels (GA) with radial powers (odd PHS), namely

ΦH(xxx) = ΦH(xxx ; ε, γ) = e−(ε‖xxx‖)2 + γ‖xxx‖2α−1.

The Gaussian component contribute to attain exponential convergence

while the polyharmonic part control the stability, namely the grow of
the condition number, of the scheme.

¶Mishra et al., “Hybrid Gaussian-cubic radial basis functions for scattered data interpola-
tion”, Comput. Geosci. 22-5 (2018).
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RBFs and hybrid kernels
Hybrid kernels

Theorem
Suppose Φ : Rd → C is continuous, slowly increasing, and possesses a gener-
alized Fourier transform Φ̂ of order m, which is continuous on Rd\{0}. Then
Φ is conditionally positive definite of order m if and only if Φ̂ is nonnegative
and nonvanishing.

Theorem (G-C, Zavaleta (2020))
The function ΦH(x) = ΦG(x)+γΦPH(x), where γ ∈ (0, 1); ΦG(x) = exp−a‖x‖2 ;
ΦPH(x) = ‖x‖b, b >, b /∈ 2N, has the generalized Fourier transform

Φ̂H(ω) = 1
(
√
2a)2

exp−
‖ω‖2

4a2 +γ 2
b+d/2(d + b)/2)

Γ(−b/2) ‖ω‖−b−d
2 , ω 6= 0

which is nonnegative and nonvanishing.
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RBFs and hybrid kernels
Hybrid kernels

Problem
How to choose parameters ε and γ in such a way that there is a balance
between accuracy and conditioning?

Consider D ⊂ Rd , X = {xxxk}nk=1 in D, and a scaled domain Dh, defined as

Dh = {yyy : yyy = hxxx for xxx ∈ D and 0 < h ∈ R}.

where h is a scale factor.
We define the following interpolant for Y = {yyyk}nk=1 (with yyyk = hxxxk ∀k) in
Dh using hybrid kernels

σ̂(yyy) =
n∑

k=1
λ̂kΦH(yyy − yyyk ; ε̂, γ̂)
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RBFs and hybrid kernels
Hybrid kernels

Setting γ̂ = 1 and ε̂ free, we consider:

σ̂(yyy) =
n∑

k=1
λ̂kΦH(yyy − yyyk ; ε̂, 1) (1)

What we want to do is characterize the interpolant σ given by (2)

σ(xxx) =
n∑

k=1
λkΦH(xxx − xxxk ; ε, γ) (2)

through σ̂ given by (1).
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RBFs and hybrid kernels
Hybrid kernels

Proposition (G-C, Zavaleta (2020))
Let σ be the interpolant defined in D over X given in (2) and σ̂ the interpolant
defined in Dh over Y given in (1). Assume that

h = 2α−1
√
γ, ε̂ = ε

2α−1
√
γ

y λk = λ̂k ∀ k = 1, . . . , n,

then
σ̂(yyy) = σ(xxx)

for xxx ∈ D and yyy = hxxx ∈ Dh.

Moreover, if AΦH (·;ε,γ),X and AΦH (·;ε̂,1),Y are the corresponding Gram matrices
of using (2) and (1), it holds that

κ(AΦH (·;ε,γ),X ) = κ(AΦH (·;ε̂,1),Y)
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RBFs and hybrid kernels
Hybrid kernels

Conjecture (Zavaleta (2020))
Let X = {xxxk}nk=1 ⊂ D ⊂ R2 and consider the interpolant

σ(xxx) =
n∑

k=1
λkΦH(xxx − xxxk ; ε, γ) =

n∑
k=1

λk
(
e−(ε‖xxx−xxxk‖)2 + γ‖xxx − xxxk‖2α−1

)
Then, for some ωn, which depends on n, if we take

ε =
2α−1

√ n
ωn

RX

where RX is the radii of the of the smallest disk enclosing X , there are constants
c1, c2 ∈ R, such that for all γ < c1, we have κ(A) < c2 and the approximation
error is acceptable.
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RBFs and hybrid kernels
Hybrid kernels

Theorem (G-C, Zavaleta (2020))
For the interpolation with ΦH(x) the condition number of the interpolation
matrix can be bounded by

κ (AΦH ,X ) = λmax (AΦH ,X )
λmin(AΦH ,X )

≤
CΦHh

−d
X ,D

Cd (2a)−d/2 exp−M2
d/(q2

X a) q−d
X + γCdCb(2Md )−d−bqb

X

where CΦH = ΦH(0); γ ∈ (0, 1), n the total number of nodes, hX ,D is the fill
distance and qX the separation distance and for any Md > 0 satisfying

Md ≥
6.38d
qX

.
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Optimal control problem

We are interested in finding the solution to the following distributed optimal
control problem

miny ,u Jβ(y , u) = miny ,u
1
2‖y − ŷ‖2L2(Ω) + β

2 ‖u‖
2
L2(Ω)

s. t. Ey = u in Ω, By = g on ∂Ω

Incorporating PDE constraints by means of Lagrange multipliers (Lagrangian
formulation),

L(y , u, p1, p2) = Jβ(y , u) +
∫

Ω
(Ey − u) p1 +

∫
∂Ω

(By − g) p2
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Optimal control problem

Taking Frechet derivative we obtain the following Euler-Lagrange equa-
tions

Ey = u in Ω

By = g over ∂Ω

∣∣∣∣∣∣∣
βE∗u = ŷ − y in Ω

u = 0 over ∂Ω

Within the context of the RBF theory, there are few works that address the
solution of this problem:

Pearson. Poisson - Global collocation methods.

We. Poisson and convection-diffusion - Local RBF methods with ex-
tended precision.
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Optimal control problem

The methods that have been used to solve the equations were:
Global asymmetric collocation (MQ,GA,HK).

Local methods.

Local asymmetric method with differential quadrature - LAM-DQ
(MQ,GA).

Local asymmetric applied twice - LAM-LAM (MQ,GA).

Radial basis-finite difference - FBR-DF (PHS + poly,HK,HK + poly)

Ey |xxxk
≈

n(k)∑
j=1

wjyj , yj = y(xxx j).
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Optimal control problem
Numerical results

Consider the Poisson control problem,

−4 y = u, −β 4 u = ŷ − y in Ω

y = g , u = 0 on ∂Ω

ŷ = sinπx1 sinπx2

g = 0

with exact solution given by

yβ(x1, x2) = 1
1 + 4β(π)4 sinπx1 sinπx2

uβ(x1, x2) = 2π2
1 + 4β(π)4 sinπx1 sinπx2
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Optimal control problem
Numerical results

Method ε/p REy REu κ

AC HK 7.5/− 7.35e-6 4.32e-4 1.83e14

AC HK+poly 7.5/7 2.06e-7 7.52e-6 3.73e14

FBR-DF PHS+poly −/7 1.49e-9 1.31e-7 6.46e12

FBR-DF HK −/− 5.28e-6 5.09e-4 2.90e14

FBR-DF HK+poly −/6 4.35e-9 2.81e-7 3.17e14

Table: Comparison with RBF-FD for β = 10−6 and n(k) = 50 for the local systems.
Using RBF-FD with PHS+poly ΦPH + p p ∈ P8(R2), with HK ΦH and with HK +
poly ΦH + p p ∈ P8(R2), in all cases γ = 10−8 and ε is variable for each local system

calculated with εk =
3√n(k)

4.0846 · RDk

. In all cases n = 622.
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Null controllability of the Stokes equation
Mathematical formulation of the problem

The velocity vector y and pressure p is model via the time dependent Stokes
equations: 

yt − µ∆y +∇p = v1ω in Q,

∇ · y = 0 in Q,

y = 0 on Σ,

y(·, 0) = y0(·) in Q,

with Ω ⊂ Rd and ω ⊂ Ω, Q = Ω× (0,T ) and Σ = ∂Ω× (0,T ).
Given y0 ∈ H we want to find a control v = v(y0) ∈ L2(0,T ; L2(ω)N) with
vj ≡ 0 for some j ∈ {1, . . . ,N} such that y is the solution of the time dependent
Stokes equations and:

y(·,T ) = 0 in Ω.

where: H := {u ∈ L2(Ω)N : ∇ · u = 0 in Ω; u · n = 0 on ∂Ω}
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Null controllability of the Stokes equation
Theoretical description
Let T > 0 and ω ⊂ Ω a (small) nonempty open subset which is the control domain and Q :=
Ω× (0,T ).

For y0 ∈ H, we consider the cost functional J defined by

J(v) :=
1
2

∫∫
ω×(0,T )

|v|2 dx dt +
1
2c1
‖y(.,T )‖2L2(Ω) dx +

1
2c2

∫∫
ω×(0,T )

|vj |2 dx dt

To calculate the gradient we introduce the Lagrangian formulation defined by:
L : [H1

0 (Ω)2]2 × [L2
0(Ω)]2 × L2(Q)2 → R

L(y,w, q, p, v) :=
1
2

∫∫
ω×(0,T )

|v|2 dx dt +
1
2c1
‖y(.,T )‖2L2(Ω) dx +

1
2c2

∫∫
ω×(0,T )

|vj |2 dx dt

+
∫∫

Q

yt · w +∇y · ∇w− div(w)p − div(w)q dx dt

−
∫∫

ω×(0,T )

v · w dx dt +
∫

Ω
(y(·, 0)− y0) · w(·, 0) dx .

where y is solution of the Stokes system, c1, c2 are arbitrary positive numbers associated respectively
to the final condition y(·,T ) = 0 and the internal control.
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Null controllability of the Stokes equation
Adjoint problem and Frechet derivative

It is easy to verify that the Fréchet derivate of J with respect to v is:
∂J
∂v (v) = vi − wi if i 6= j and ∂J

∂v (v) = 1
2c2

vj − wj , in ω × (0,T ).

where w ∈ V is the solution of the adjoint system of Stokes equations:

−wt −∇ · Dw +∇q = 0 in Q,

∇ ·w = 0 in Q,

w = 0 on Σ,

w(·,T ) = − 1
c1
y(·,T ) in Ω,

Numerical solution of the control problem:

Using the conjugate gradient method and LHI Div-free-Hybrid RBF techniques
for the Stokes and the adjoint systems we are able to numerical optimized the
cost function J.

Jorge Zavaleta (IM-UNAM) RBF-HK applied to control problems 2020 28 / 34



Null controllability of the Stokes equation
Numerical results

Wendland‖ provided the basis for a new discretization scheme for Stokes equa-
tions using analytically divergence-free approximation spaces.

It works in infinite dimensional spaces (Native Spaces), and can produce
exponential order approximations.

Avoid saddle point problems for speed and pressure.

Use a discretization space for velocity and pressure simultaneously.

This allows a collocation meshfree method to be used to approximate
the PDE solution using positive defined divergence-free matrix-valued
kernels.

φφφDiv = ∇×∆× φ = {−∆I +∇∇ᵀ}φ

‖Wendland, “Divergence-free kernel methods for approximating the Stokes problem”, SIAM J. Numer. Anal. 47-4 (2009).
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Null controllability of the Stokes equation
Numerical results
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Figure: L2-norm square solution of the velocity field (as a function of time) for the
approximate control problem with controls vvv = 000 (black), vvv = (v1, v2) (pink), vvv =
(v1, 0) (red) and vvv = (0, v2) (blue) with Navier-slip boundary condition. LHI-RBF
hybrid kernel, with parameters γ1 = 1e-3, γ2 = 1e-8, ε1 = 1.0, ε2 = 5e-10.
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Null controllability of the Stokes equation
Numerical results
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Figure: L2-norm square solution of the velocity field (as a function of time) for the
approximate control problem with controls vvv = 000 (black), vvv = (v1, v2) (pink), vvv =
(v1, 0) (red) and vvv = (0, v2) (blue) with Navier-slip boundary condition. FEM
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Conclusions and future work

The application of RBFs methods to the solution of test control problems
has showed good results, and gives the possibility to extend them to other
control problems.

No LBB or inf/sup condition is necessary. Exponential convergence can
be obtained for smooth solutions.

Navier-slip boundary conditions can be easily incorporated to complex
boundaries.

Also, during the study of the numerical solution of control problems we
gave some theoretical and practical insight of how can we apply these
methods to these problems.

Work is in progress to solve the local exact controllability of the Navier-
Stokes equation by these methods.
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Thank you for your attention
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