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The controlled heat equation

Let Ω be an connected open domain in Rd with smooth boundary and
ω ⊂ Ω an open subset.{

yt −∆y = 1ωu, in Ω,

y = 0, on ∂Ω.
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Control theory on the heat equation
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From constructive control to operator theory
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Exponential stabilization
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Finite time stabilization
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New connections
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Beyond the classical results

ã Rapid stabilization.

Quantitative rapid stabilization via explicit feedback laws.

ã Null controllability with optimal costs.

Totally constructive null controllability with optimal costs.
Also works for Navier–Stokes equations.

ã Finite time stabilization of the 1D heat equation.

Finite time stabilization of the multidimensional heat equation and
the two dimensional Navier–Stokes equations.
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Review 1: From constructive control to operator theory

Shengquan Xiang Stabilization of the heat equations 2021, February 04 5 / 41



H.U.M. on controllability

Controllability of
ẋ = Ax+Bu.

Natural constructive approach:
Explicitly solve the system and find the optimal choice.

Lions’ observation (H.U.M.):
The exact controllability is equivalent to the observability of the dual
operator.
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Unique continuation on operators

Given ω ⊂ Ω and a linear differential operator L,

Ly = 0 on Ω.

Observability inequality:
the observation (value) on y|ω
controls the value of y|Ω.

Unique continuation:
y|ω = 0 implies y|Ω = 0.
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Carleman’s innovation

L be a linear operator,

Ly = 0 in Ω,

y|ω = 0⇒ y|Ω = 0 ???

. Holmgren: L has analytic coefficients.

. Carleman’s idea: weighted estimates.

. Calderon: simple characteristic condition.

. Hörmander: peudo-convexity condition.

. Hörmander-Tataru-Robbiano-Zuily: conditional peudo-convexity,
partially analytic wave type operators.

Shengquan Xiang Stabilization of the heat equations 2021, February 04 8 / 41



Carleman estimates and Observability

Two methods are discovered simultaneously in the 90’s.
F Fursikov–Imanuvilov method: global Carleman

nonlinear and non-autonomous systems,
optimal costs for the nonlinear heat equations.

F Lebeau–Robbiano strategy: local Carleman (spectral inequality)
constructive on linear systems,
optimal costs for the heat equations and Stokes equations.
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Spectral inequality

The Laplace operator has an orthogonal basis of L2(Ω),

∆ : H2(Ω) ∩H1
0 (Ω)→ L2(Ω),

0 < τ1 ≤ τ2 ≤ τ3 ≤ ... ≤ τn ≤ ...,
−∆ei = τiei with ei|∂Ω = 0.

Spectral inequality
There exists C1 ≥ 1 independent of λ > 0 such that

||
∑
τi≤λ

aiei||2L2(ω) ≥ C
−1
1 e−C1

√
λ
∑
τi≤λ

a2
i .
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Review 2: exponential stabilization
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Center manifold decomposition

yt +Ay = 1ωu,

with {ϕk}k the eigenfunctions.
(↘) Hs, stable manifold, with ys = P sy the projection.
(↗) Hu, unstable manifold, with yu = P uy the projection.

yst +Ays = P s(1ωu) on Hs,

yut +Ayu = P u(1ωu) on Hu.
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Riccati method

(1) For any yu0 there exits open loop control u(t),

|yu(t)|+ |u(t)| ≤ Ce−γt|yu0 |.

(2) For any y0 there exits u(t),

|ys(t)|+ |yu(t)|+ |u(t)| ≤ Ce−γt|y0|.

(3) Optimal control problem,

Q(y0) = min

{
1

2

∫ ∞
0

|(−∆)
3
4 y(t)|2 + |u(t)|2dt

}
.

(4) Solve G satisfying nonlinear Riccati equation,

(Gy, y) = 2Q(y),

2(Ay,Gy) +
∑

1≤k≤N

(ϕk, Gy)2ω = |(−∆)
3
4 y|2.

(5) Feedback law u =
∑

(Gy,ϕk)ϕk stabilizes the closed-loop system.
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Review 3: finite time stabilization
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Finite time stabilization project

Finite time stabilization: Let T > 0. Find a (time-varying) feedback law
such that the system is uniformly stable, moreover, the solutions
become 0 after any interval of time greater than T .

Finite time stabilization project
Finite time (global) stabilization for the system which is finite time
(global) null controllable.

© Natural
Finite time stabilization trivial−−−→ Finite time null controllability

§ Difficult

Finite time stabilization
(???)←−−− Finite time null controllability
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KdV equation

We consider the KdV system
yt + yxxx + yx + yyx = 0 for (t, x) ∈ (s,+∞)× (0, L),

y(t, 0) = a(t) for t ∈ (s,+∞),

y(t, L) = 0 for t ∈ (s,+∞),

yx(t, L) = 0 for t ∈ (s,+∞),

at time t, the state is y(t, ·) ∈ L2(0, L) and the control is a(t).
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Natural energy dissipation

For the linearized system
yt + yxxx + yx = 0 for (t, x) ∈ (s,+∞)× (0, L),

y(t, 0) = 0 for t ∈ (s,+∞),

y(t, L) = 0 for t ∈ (s,+∞),

yx(t, L) = 0 for t ∈ (s,+∞),

the energy decays
d

dt
‖y(t)‖2L26 0.
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A better system with faster decay

We further consider
zt + zxxx + zx + λz = 0 for (t, x) ∈ (s,+∞)× (0, L),

z(t, 0) = 0 for t ∈ (s,+∞),

z(t, L) = 0 for t ∈ (s,+∞),

zx(t, L) = 0 for t ∈ (s,+∞).

Then exponential decay with rate λ,

d

dt
‖z(t)‖2L26 −2λ‖z(t)‖2L2 .
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Rapid stabilization: backstepping (Krstic et al.)

Bad⇐ y  z ⇒ Good?

Backstepping : Find a feedback law and a bounded linear invertible
transformation

Πλ : L2
y → L2

z,

such that the flow of y (the solution of KdV with feedback law) is
mapped into a flow of z (z = Πλy).

y(t) = Π−1
λ Sλ(t)Πλy(0),

‖y(t)‖L26 e−λt‖Π−1
λ ‖L2→L2‖Πλ‖L2→L2‖y(0)‖L2 .
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Kernel function: Coron–Cerpa (2013)

Volterra transformation

z(x) = Πλ(y) := y(x)−
∫ L

x
k(x, r)y(r)dr,

with feedback law

a(t) =

∫ L

0
k(0, x)y(t, x)dx.

Hence the kernel k verifies
kxxx + kyyy + kx + ky + λk = 0 in T ,
k(x, L) = 0 on [0, L],

k(x, x) = 0 on [0, L],

kx(x, x) = λ
3 (L− x) on [0, L].
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Finite time stabilization: Coron–Nguyen approach

Since λn > 0 and

‖y(t)‖L26 e−λnt‖Π−1
λn
‖‖Πλn‖‖y(0)‖L2 ,

there exists tn such that

‖y(tn)‖L26
1

2
‖y(0)‖L2 .

Null controllability in time T : find {λn}n such that∑
n

tn < T < +∞⇐= ‖Πλ‖, ‖Π−1
λ ‖ are “well” controlled.

Further modification for finite time stabilization.
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“Good enough" estimates

Lemma (Xiang, 2017)

Let λ > 2. The kernel equation has a unique solution kλ ∈ C3(T )
satisfying

‖kλ‖C3(T )6 e
(1+L)2

√
λ.

“Proof ”:
(1) Construct an explicit solution via iteration.
(2) Give quantitative estimates on this solution.
(3) Prove the uniqueness.
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New connections

Shengquan Xiang Stabilization of the heat equations 2021, February 04 20 / 41



Motivation: finite time stabilization

eC
√
λ type rapid stabilization

⇓
finite time stabilization
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“Obstruction” on backstepping

Backstepping’s success on 1D models: linear Schrödinger, viscous
Burgers, KdV, linear water tank, parabolic, transport, hyperbolic of
conservation laws, Kuramoto-Sivashinsky, degenerate operators,
ODE-PDE, PDE-PDE...
(Krstic, Coron, Christophe Zhang, Amaury Hayat, Bastin, Vazquez,
Espitia, Polyakov, Efimov, Perruquetti, Lissy, Liu, Cerpa, Prieur, Hu,
Shang, Nguyen, Lü, Olive, Gagnon, Girard, Di Meglio, Morancey, Marx,
Steeves, et al.)

What about multidimensional models?
K "...... the kernel equations seem to be quite complicated......"

—– Coron
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Riccati is “complicated”

Nonlinear algebraic Riccati equation

Q(y0) = min

{
1

2

∫ ∞
0
|(−∆)

3
4 y(t)|2 + |u(t)|2dt

}
,

2(Ay,Gy) +
∑

1≤k≤N
(ϕk, Gy)2

ω = |(−∆)
3
4 y|2,

(Gy, y) = 2Q(y)...

K “Seems that not easy to get quantitative estimates. Regularities..."
—– My feeling
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Letters with Trélat

K “Cher Emmanuel...... demander un point technique sur l’équation de
Riccati...... Amitiés Shengquan"

K “Cher Shengquan...... par ailleurs, au cas où ça te serait utile, je
t’envoie ce document...... C’est une idée qui remonte à loin : elle est
bien expliquée par Russell dans son survey de 1978. Jean-Michel et
moi avons utilisé cette idée, en la combinant à une homotopie, pour la
contrôlabilité des paraboliques semi-linéaires, dans un article de
2004...... Amitiés Emmanuel"
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Coron–Trélat: stabilization for control (quasi static)

Let L > 0 and f ∈ C2(R;R) with f(0) = 0.

yt − yxx − f(y) = 0, y(t, 0) = 0, y(t, L) = u(t).

Jean-Michel Coron,
Control and Nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007.

FREELY available from
the author’s web page.
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Coron–Trélat: stabilization for control (quasi static)

Let L > 0 and f ∈ C2(R;R) with f(0) = 0.

yt − yxx − f(y) = 0, y(t, 0) = 0, y(t, L) = u(t).

After variantion and linearization (simplified), with A = ∆ + f ′(0)id,

zt −Az = b(x)u, z(t, 0) = z(t, L) = 0.

Let {λi, ei} be the basis of A with λN+1 < 0 ≤ λN .

z(t, x) =
∑
i

zi(t)ei(x),

żi(t) = λizi(t) + biu(t).
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Define XN (t) = (z1(t), ..., zN (t))T ,

ẊN (t) = ANXN (t) +BNu(t),

with (AN , BN ) satisfying Kalman condition (via controllability).

∃KN = (k1, ..., kN ) and symmetric positive definite QN ,

QN (AN +BNKN ) + (AN +BNKN )TQN = −IN .

Take u := KNXN and Lyapunov function

V (z) = γXT
NQNXN − (z,Az)L2 .

Direct calculation yields

V̇ = −γ|XN |2 − 2||Az||2 − (bKNXN , Az),

≤ −εV (z),

with suitable choice of γ and small enough ε.
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Attempt on the multidimensional heat equation

yt −∆y = 1ωu,

0 < τ1 ≤ ... ≤ τN(λ) ≤ λ < τN(λ)+1 ≤ ...,
−∆ei = τiei with ei|∂Ω = 0.

Observation: the control term 1ωu(t) have infinite dimensional degree,
compared to the degree 1 of 1D model.

y(t) :=

∞∑
i=1

yi(t)ei, u(t) :=

N(λ)∑
i=1

eiui(t),

1ωej =
∞∑
i=1

(
1ωej , ei

)
L2(Ω)

ei =
∞∑
i=1

(
ei, ej

)
L2(ω)

ei.
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Unique continuation implies stabilization

XN :=


y1

y2

...
yN

 , UN :=


u1

u2

...
uN

 , AN :=


−τ1

−τ2

...
−τN


the low frequency satisfies

ẊN (t) = ANXN (t) + JNUN (t),

JN :=
(
(ei, ej)L2(ω)

)N
i,j=1

.

Thanks to unique continuation, the symmetric matrix JN is invertible:
(AN , JN ) verifies Kalman condition, by Coron-Trélat method get
exponential stabilization.

Quantitative rapid stabilization?
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Quantitate matrix JN

JN =
(
(ei, ej)L2(ω)

)N
i,j=1

: symmetric, positive definite.

We choose UN (t) := −γλXN (t),

ẊN (t) = ANXN (t)− γλJNXN (t),

and propose Lyapunov function,

V (z) = γXT
NQNXN − (z,Az)L2 ,

QN (AN + JNKN ) + (AN + JNKN )TQN = −IN .

Thus,
1

2

d

dt
XT
NXN = XT

NANXN − γλXT
NJNXN .
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Quantitate matrix JN

JN =
(
(ei, ej)L2(ω)

)N
i,j=1

: symmetric, positive definite.

We choose UN (t) := −γλXN (t),

ẊN (t) = ANXN (t)− γλJNXN (t),

and propose Lyapunov function,

V (y) = µλX
T
NXN + ||P⊥N y||2L2 = µλ||PNy||2L2 + ||P⊥N y||2L2 .

Thus,
1

2

d

dt
XT
NXN = XT

NANXN − γλXT
NJNXN .
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Quadratic form JN and Spectral inequality

Quantitative estimate of XT
NJNXN?

looks like (
∑
aiei)

2...

Spectral inequality
There exists C1 ≥ 1 independent of λ > 0 such that

||
∑
τi≤λ

aiei||2L2(ω) ≥ C
−1
1 e−C1

√
λ
∑
τi≤λ

a2
i .

XT
NJNXN ≥ C−1

1 e−C1

√
λ||XN ||22

Proof : remind that N = N(λ), i.e. τN(λ) ≤ λ < τN(λ)+1,

XT
NJNXN =

∑
1≤i,j≤N

ai (ei, ej)L2(ω) aj =

 ∑
1≤i≤N

aiei,
∑

1≤j≤N
ajej


L2(ω)

= ||
∑

1≤i≤N
aiei||2L2(ω) ≥ C

−1
1 e−C1

√
λ||XN ||22.
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Quantitative rapid stabilization

Let λ > 0. For γλ and µλ to be chosen later on,

UN (t) := γλXN (t), V (y) = µλ||XN ||22 + ||P⊥N y||2L2 .

We have

ẊN (t) = ANXN (t)− γλJNXN (t),

yt = ∆y − γλ1ω

(
N∑
i=1

eiyi(t)

)
in Ω,

thus

d

dt
V (y(t)) = 2µλX

T
NẊN + 2

〈
P⊥N y,

d

dt
y

〉
H1

0 (Ω)×H−1(Ω)

.
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On the one hand,

2µλX
T
NẊN = 2µλX

T
N

(
AN − γλJN

)
XN ≤ −2µλγλC

−1
1 e−C1

√
λ||XN ||22.

On the other hand

2

〈
P⊥N y,

d

dt
y

〉
= 2

〈
P⊥N y,∆y

〉
− 2γλ

(
P⊥N y, 1ω

(
N∑
i=1

eiyi(t)

))
L2(Ω)

,

= −2

∞∑
i=N+1

τiy
2
i − 2γλ

(
P⊥N y, 1ω(PNy)

)
L2(Ω)

,

≤ −2λ||P⊥N y||2L2(Ω) + 2γλ||P⊥N y||L2(Ω)||PNy||L2(Ω),

≤ −2λ||P⊥N y||2L2(Ω) + λ||P⊥N y||2L2(Ω) +
γ2
λ

λ
||PNy||2L2(Ω),

= −λ||P⊥N y||2L2(Ω) +
γ2
λ

λ
||XN ||22.
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On the choice of γλ and µλ

V (y) = µλ||XN ||22 + ||P⊥N y||2L2(Ω).

Take

γλ := C1e
C1

√
λλ, µλ :=

γ2
λ

λ2
= C2

1e
2C1

√
λ.

Then,

d

dt
V (y(t)) ≤ −2µλγλC

−1
1 e−C1

√
λ||XN ||22 − λ||P⊥N y||2L2(Ω) +

γ2
λ

λ
||XN ||22,

= −2µλλ||XN ||22 − λ||P⊥N y||2L2(Ω) + µλλ||XN ||22,

= −µλλ||XN ||22 − λ||P⊥N y||2L2(Ω) = −λV (y(t)).

Quantitative rapid stabilization:

||y(t)||2L2 ≤ V (y(t)) ≤ e−λtV (y(0)) ≤ C2
1e

2C1

√
λe−λt||y(0)||2L2 !!!
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Quantitative rapid stabilization

Theorem (Xiang, 2020)
For any λ > 0 the closed-loop system

yt −∆y = −γλ1ω
(
PN(λ)y

)
in Ω,

y = 0 on ∂Ω,

is exponentially stable:

||y(t)||L2(Ω) ≤ C1e
C1

√
λe−

λt
2 ||y0||L2(Ω).

Remark: without the spectral inequality, by a good choice of γ and µ
we can still get rapid stabilization, but no estimate of the form eC

√
λ.
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Beyond the classical results

ã Rapid stabilization.
Quantitative rapid stabilization via explicit feedback laws.

ã Null controllability with optimal costs.
Totally constructive null controllability with optimal costs.
Also works for Navier–Stokes equations.

ã Finite time stabilization of the 1D heat equation.
Finite time stabilization of the multidimensional heat equation and
the two dimensional Navier–Stokes equations.
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Constructive null controllability

For any λn > 0, there exists tn such that

‖y(t)‖2L2≤ C2
1e

2C1
√
λne−λnt‖y(0)‖2L2 ,

‖y(tn)‖L2≤
1

2
‖y(0)‖L2 .

Constructive null controllability by selecting {λn}n such that∑
n

tn < T < +∞.
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An advice from Fernández-Cara

K "...... dans les problèmes que tu as considérés, il serait très
intéressant de déduire des estimations du coût du contrôle,
c’est-à-dire, de la plus petite norme d’un contrôle qui fait le travail......"

—– Fernández-Cara
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Optimal cost for null controllability

There exists C > 0 such that the cost of null controllability satisfies,

||u||L2(0,T ;L2(ω)) ≤ Ce
C
T , ∀T ∈ (0, 1),

where the form 1
T is optimal.

Spectral inequality (Seidman, Miller, et al.)
the heat equation, also 1

T for Stokes.
Global Carleman (Imanuvilov, Fernández-Cara, Puel, Zuazua,
Guerrero, et al.)
nonconstructive, nonlinear heat systems,
1
T 4 for Stokes, 1

T 9 for Navier–Stokes.
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Totally constructive null control with optimal costs

Remember C1 from spectral inequality. Take C2 > C1 such that

8(1 + λ)C2
1e

2C1

√
λ ≤ C2e

C2

√
λ, ∀ λ > 0.

Select Q > 0 such that

C2e
C2Qm ≤ e

Q2

64
m, ∀ m ≥ 1.

Let 1/T ∈ (2n0−1, 2n0 ] with n0 ∈ N∗. For every n ∈ N, we define

Tn := 2−n0

(
1− 1

2n

)
, In := [Tn, Tn+1), λn := Q222(n0+n).

Define C3 = Q2/32, the cost is given by

||u||L∞(0,T ;L2(ω)) ≤ C3e
C3
T , ∀T ∈ (0, 1).
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Optimal cost for null controllability

Totally constructive approach:

||u||L∞(0,T ;L2(ω)) ≤ C3e
C3
T , ∀T ∈ (0, 1).

As Lyapunov function is stable under perturbation, exactly the same
construction applies for

ã nonlinear heat equations, eC/T ;
ã Navier–Stokes equations, eC/T ;
ã to be discovered...
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Beyond the classical results

ã Rapid stabilization.
Quantitative rapid stabilization via explicit feedback laws.

ã Null controllability with optimal costs.
Totally constructive null controllability with optimal costs.
Also works for Navier–Stokes equations.

ã Finite time stabilization of the 1D heat equation.
Finite time stabilization of the multidimensional heat equation and
the two dimensional Navier–Stokes equations.
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Finite time stabilization

Some modification on the constructive null controllability.

Theorem (Xiang, 2020)
For any Λ ≥ 1, for any T > 0, we construct an explicit T -periodic
proper feedback law U that stabilizes the heat equation in finite time:

(i) (2T stabilization) Φ(2T + t, t; y0) = 0, ∀t ∈ R, ∀||y0|| ≤ Λ.

(ii) (Uniform stability) For every δ > 0 there exists an effectively
computable η > 0 such that

(||(y0||L2 ≤ η)⇒
(
||Φ(t, t′; y0)||L2 ≤ δ, ∀t′ ∈ R, ∀t ∈ (t′,+∞)

)
.

The same for two dimensional incompressible internal controlled
Navier–Stokes equations. (Xiang, 2020)
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Thank you for your attention!
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