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Backstepping for PDEs

In ODEs, a particular approach to stabilization of dynamic systems with “triangular” struc-

ture.

Wildly successful in the area of ODE nonlinear control.

For PDEs, roughly speaking, backstepping is a constructive method that achieves Lya-

punov stabilization by transforming the system into a stable “target system,” which is often

achieved by collectively shifting all the eigenvalues in a favorable direction in the complex

plane, rather than by assigning individual eigenvalues.

Backstepping allows this task can be achieved in a rather elegant way where the control

gains are easy to compute, symbolically, numerically, and in some cases even explicitly...

sometimes...!
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Backstepping for PDEs

1. Identify the undesirable terms in the PDE.

2. Choose a target system in which the undesirable terms are to be eliminated by state

transformation and feedback, as in feedback linearization.

3. Find the state transformation typically as identity minus a Volterra operator (in x).

Volterra operator = integral operator from 0 up to x (rather than from 0 to 1).

A Volterra transformation is “triangular” or “spatially causal.”

4. Obtain boundary feedback from the Volterra transformation. The transformation alone

cannot eliminate the undesirable terms, but the transformation brings them to the

boundary, so control can cancel them.
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Backstepping for PDEs

Gain fcn of boundary controller = kernel of Volterra transformation.

Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.

Reward: elegant controller, clear closed-loop behavior.
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Volterra kernel satisfies a linear PDE.

Backstepping is not “one-size-fits-all.” Requires structure-specific effort by designer.
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Backstepping for PDEs—An example

Start with one of the simplest unstable PDEs, a (constant-coefficient) reaction-diffusion

equation:

ut(x, t) = uxx(x, t)+ λu(x, t) (1)

u(0, t) = 0 (2)

u(1, t) = U(t) = control (3)

The open-loop system (1), (2) (with u(1, t) = 0) is unstable with arbitrarily many unstable

eigenvalues for sufficiently large λ > 0.

Since the term λu is the source of instability, the natural objective for a boundary feedback

is to “eliminate” this term.

Backstepping solution presented in Smyshlyaev & Krstic, IEEE TAC 2004



Backstepping for PDEs—An example

Target system (exp. stable)

wt(x, t) = wxx(x, t) (4)

w(0, t) = 0 (5)

w(1, t) = 0 (6)

State transformation

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy (7)

Feedback control

u(1, t) =
∫ 1

0
k(1,y)u(y, t)dy (8)

Task: find kernel k(x,y).



Backstepping for PDEs—An example

Task: find the function k(x,y) (which we call “gain kernel”) that makes the plant (1), (2) with

the controller (8) equivalent to the target system (4)–(6).

We introduce the following notation:

kx(x,x) =
∂

∂x
k(x,y)|y=x

ky(x,x) =
∂

∂y
k(x,y)|y=x

d

dx
k(x,x) = kx(x,x)+ ky(x,x).



Backstepping for PDEs—An example

Differentiating the transformation (7) with respect to x gives

wx(x) = ux(x)− k(x,x)u(x)−
∫ x

0
kx(x,y)u(y)dy

wxx(x) = uxx(x)−
d

dx
(k(x,x)u(x))− kx(x,x)u(x)−

∫ x

0
kxx(x,y)u(y)dy

= uxx(x)−u(x)
d

dx
k(x,x)− k(x,x)ux(x)− kx(x,x)u(x)

−
∫ x

0
kxx(x,y)u(y)dy . (9)



Backstepping for PDEs—An example

Next, we differentiate the transformation (7) with respect to time:

wt(x) = ut(x)−
∫ x

0
k(x,y)ut(y)dy

= uxx(x)+λu(x)−
∫ x

0
k(x,y)

(

uyy(y)+λu(y)
)

dy

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)

+
∫ x

0
ky(x,y)uy(y)dy−

∫ x

0
λk(x,y)u(y)dy (integration by parts)

= uxx(x)+λu(x)− k(x,x)ux(x)+ k(x,0)ux(0)+ ky(x,x)u(x)− ky(x,0)u(0)

−
∫ x

0
kyy(x,y)u(y)dy−

∫ x

0
λk(x,y)u(y)dy . (integration by parts) (10)

Subtracting (9) from (10), we get

wt −wxx =

[

λ+2
d

dx
k(x,x)

]

u(x)+ k(x,0)ux(0)

+
∫ x

0

(

kxx(x,y)− kyy(x,y)−λk(x,y)
)

u(y)dy

= 0



Backstepping for PDEs—An example

For this to hold for all u, three conditions have to be satisfied:

kxx(x,y)− kyy(x,y)−λk(x,y) = 0 (11)

k(x,0) = 0 (12)

λ+2
d

dx
k(x,x) = 0. (13)

We simplify (13) by integrating it with respect to x and noting from (12) that k(0,0) = 0,

which gives us

kxx(x,y)− kyy(x,y) = λk(x,y)

k(x,0) = 0

k(x,x) =−
λ

2
x

(14)



Backstepping for PDEs—An example

These three conditions form a well posed PDE of hyperbolic type in the “Goursat form.”

One can think of the k-PDE as a wave equation with an extra term λk.

x plays the role of time and y of space.

In quantum physics such PDEs are called Klein-Gordon PDEs.



y

x0 1

1

Domain of the PDE for gain kernel k(x,y).

The boundary conditions are prescribed on hypotenuse and the lower cathetus of the

triangle.

The value of k(x,y) on the vertical cathetus gives us the control gain k(1,y).



Backstepping for PDEs—An example

To find a solution of the k-PDE (14) we first convert it into an integral equation.

Introducing the change of variables

ξ = x+ y, η = x− y (15)

we have

k(x,y) = G(ξ,η)

kx = Gξ+Gη

kxx = Gξξ+2Gξη+Gηη

ky = Gξ−Gη

kyy = Gξξ−2Gξη+Gηη .



Backstepping for PDEs—An example

Thus, the gain kernel PDE becomes

Gξη(ξ,η) =
λ

4
G(ξ,η) (16)

G(ξ,ξ) = 0 (17)

G(ξ,0) = −
λ

4
ξ . (18)

Integrating (16) with respect to η from 0 to η, we get

Gξ(ξ,η) = Gξ(ξ,0)+
∫ η

0

λ

4
G(ξ,s)ds =−

λ

4
+

∫ η

0

λ

4
G(ξ,s)ds . (19)

Next, we integrate (19) with respect to ξ from η to ξ to get the integral equation

G(ξ,η) =−
λ

4
(ξ−η)+

λ

4

∫ ξ

η

∫ η

0
G(τ,s)dsdτ (20)

The G-integral eqn is easier to analyze than the k-PDE.



Backstepping for PDEs—An example

Start with an initial guess

G0(ξ,η) = 0 (21)

and set up the recursive formula for (20) as follows:

Gn+1(ξ,η) =−
λ

4
(ξ−η)+

λ

4

∫ ξ

η

∫ η

0
Gn(τ,s)dsdτ (22)

If this functional iteration converges, we can write the solution G(ξ,η) as

G(ξ,η) = lim
n→∞

Gn(ξ,η) . (23)



Backstepping for PDEs—An example

Let us denote the difference between two consecutive terms as

∆Gn(ξ,η) = Gn+1(ξ,η)−Gn(ξ,η) . (24)

Then

∆Gn+1(ξ,η) =
λ

4

∫ ξ

η

∫ η

0
∆Gn(τ,s)dsdτ (25)

and (23) can be alternatively written as

G(ξ,η) =
∞

∑
n=0

∆Gn(ξ,η) . (26)

Computing ∆Gn from (25) starting with

∆G0 = G1(ξ,η) =−
λ

4
(ξ−η) , (27)

we can observe the pattern which leads to the following formula:

∆Gn(ξ,η) =−
(ξ−η)ξnηn

n!(n+1)!

(

λ

4

)n+1

(28)

This formula can be verified by induction.



Backstepping for PDEs—An example

The solution to the integral equation is given by

G(ξ,η) =−
∞

∑
n=0

(ξ−η)ξnηn

n!(n+1)!

(

λ

4

)n+1

. (29)

To compute the series (29), note that a first order modified Bessel function of the first kind

can be represented as

I1(x) =
∞

∑
n=0

(x/2)2n+1

n!(n+1)!
. (30)



Backstepping for PDEs—An example

Comparing (30) with (29) we obtain

G(ξ,η) =−
λ

2
(ξ−η)

I1(
√

λξη)
√

λξη
(31)

or, returning to the original x, y variables,

k(x,y) =−λy

I1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
(32)



Backstepping for PDEs—An example

k1(y)

y

λ = 10

λ = 15

λ = 20

λ = 25

0 0.2 0.4 0.6 0.8 1
-40

-30

-20

-10

0

Control gain k(1,y) for different values of λ

As λ gets larger, the plant becomes more unstable which requires more control effort.

Low gain near the boundaries is logical: near x = 0 the state is small even without control

because of the boundary condition u(0) = 0; near x = 1 the control has the most impact.



Backstepping for PDEs—An example

We need to establish that stability of the w-target system (4)–(6) implies stability of the

u-closed-loop system (1), (2), (8), by showing that the transformation u #→ w is invertible.

Invertibility is obvious by seeing the backstepping transformation as an integral equation

in u.

Postulate an inverse transformation in the form

u(x) = w(x)+
∫ x

0
l(x,y)w(y)dy , (33)

where l(x,y) is the transformation kernel.

Given the direct transformation (7) and the inverse transformation (33), the kernels k(x,y)

and l(x,y) satisfy

l(x,y) = k(x,y)+
∫ x

y
k(x,ξ)l(ξ,y)dξ (34)



Backstepping for PDEs—An example

One can find also kernel equations for l(x,y):

lxx(x,y)− lyy(x,y) =−λl(x,y)

l(x,0) = 0

l(x,x) =−
λ

2
x

(35)

Comparing this PDE with the PDE (14) for k(x,y), we see that

l(x,y;λ) =−k(x,y;−λ) . (36)



Backstepping for PDEs—An example

From (32) we have

l(x,y) = −λy

I1

(

√

−λ(x2− y2)

)

√

−λ(x2− y2)
=−λy

I1

(

j

√

λ(x2− y2)

)

j

√

λ(x2− y2)
,

or, using the properties of I1,

l(x,y) =−λy

J1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
(37)



Summary of control design for the reaction-diffusion equation

Plant ut = uxx+λu (38)

u(0) = 0 (39)

Controller u(1) =−
∫ 1

0
yλ

I1

(

√

λ(1− y2)

)

√

λ(1− y2)
u(y)dy (40)

Transformation w(x) = u(x)+
∫ x

0
λy

I1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
u(y)dy (41)

u(x) = w(x)−
∫ x

0
λy

J1

(

√

λ(x2− y2)

)

√

λ(x2− y2)
w(y)dy (42)

Target system wt = wxx (43)

w(0) = 0 (44)

w(1) = 0 (45)
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Backstepping control of coupled hyperbolic 1-D systems

ut(t,x)+Σ+ux(t,x) = Λ++u(t,x)+Λ+−v(t,x)

vt(t,x)−Σ−vx(t,x) = Λ−+u(t,x)+Λ−−v(t,x)

with the following boundary conditions

u(t,0) = 0, v(t,1) =U(t)

where

u =
(

u1 · · · un
)T

, v =
(

v1 · · · vm
)T

Σ+ =





ε1 0
. . .

0 εn



 , Σ− =





µ1 0
. . .

0 µm





with

−µ1 < · · ·<−µm < 0 < ε1 ≤ · · ·≤ εn



Backstepping control of coupled hyperbolic 1-D systems

Backstepping transformation

α(t,x) = u(t,x)

β(t,x) = v(t,x)−
∫ x

0
[L(x,ξ)u(ξ)+K(x,ξ)v(ξ)]dξ

L and K defined on the triangular domain T .

Target system

αt(t,x)+Σ+αx(t,x) = Λ++α(t,x)+Λ+−β(t,x)+
∫ x

0
D+(x,ξ)α(ξ)dξ+

∫ x

0
D−(x,ξ)β(ξ)dξ

βt(t,x)−Σ−βx(t,x) = G(x)β(0)

with boundary conditions

α(t,0) = β(t,1) = 0



Backstepping control of coupled hyperbolic 1-D systems

Structure of G is lower-diagonal with diagonal of zeros

G(x) =









0 · · · · · · 0
g2,1(x)

. . . . . . ...
... . . . . . . ...

gm,1(x) · · · gm,m−1(x) 0









It can be shown to make stable

βt(t,x)−Σ−βx(t,x) = G(x)β(0)

From there follows target system stability.

G(x) is not chosen, but computed from the kernels.
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Backstepping control of coupled hyperbolic 1-D systems

Kernel equations

0 =Σ−Lx(x,ξ)−Lξ(x,ξ)Σ
+−L(x,ξ)Λ++−K(x,ξ)Λ−+

0 =Σ−Kx(x,ξ)+Kξ(x,ξ)Σ
−−K(x,ξ)Λ−−−L(x,ξ)Λ+−

with boundary conditions

0 =L(x,x)Σ++Σ−L(x,x)+Λ−+

0 =Σ−K(x,x)−K(x,x)Σ−+Λ−−

0 =G(x)−K(x,0)Σ−

Too many boundary conditions?

No, in fact more boundary conditions are needed −→ Nonuniqueness!
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Backstepping control of coupled hyperbolic 1-D systems

Developing the equations:

µi∂xLi j(x,ξ)− ε j∂ξLi j(x,ξ) =
n

∑
k=1

λ++
k j Lik(x,ξ)+

m

∑
p=1

λ−+
p j Kip(x,ξ)

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j Lik(x,ξ)

with boundary conditions:

∀1 ≤ i ≤ m,1 ≤ j ≤ n, Li j(x,x) =−
λ−+

i j

µi+ ε j

∀1 ≤ i, j ≤ m, i &= j, Ki j(x,x) =−
λ−−

i j

µi−µ j

∀1 ≤ i ≤ j ≤ m, Ki j(x,0) = 0

∀1 ≤ j < i ≤ m, Ki j(1,ξ) = li j

∀1 ≤ j < i ≤ m, gi j(x) = µ jKi j(x,0)

Well-posedness depends on the characteristics!



Characteristics for Li j

µi∂xLi j(x,ξ)− ε j∂ξLi j(x,ξ) =
n

∑
k=1

λ++
k j Lik(x,ξ)+

m

∑
p=1

λ−+
p j Kip(x,ξ)

Li j(x,x) = −
λ−+

i j

µi+ ε j



Characteristics for Kii

µi∂xKii(x,ξ)+µi∂ξKii(x,ξ) =
m

∑
p=1

λ−−
pi Kip(x,ξ)+

n

∑
k=1

λ+−
ki Lik(x,ξ)

Kii(x,0) = 0



Characteristics for Ki j, i < j

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j Lik(x,ξ)

Ki j(x,x) = −
λ−−

i j

µi−µ j

Ki j(x,0) = 0



Characteristics for Ki j, i > j

µi∂xKi j(x,ξ)+µ j∂ξKi j(x,ξ) =
m

∑
p=1

λ−−
p j Kip(x,ξ)+

n

∑
k=1

λ+−
k j Lik(x,ξ)

Ki j(x,x) = −
λ−−

i j

µi−µ j

Ki j(1,ξ) = li j

gi j(x) = µ jKi j(x,0)



Backstepping control of coupled hyperbolic 1-D systems

The presented approach produces piecewise continuous and differentiable kernels.

There are potential lines of discontinuity, which complicate kernel calculation, but do not

affect the stability result.

Next we see how we can produce a strikingly similar result for reaction-diffusion equations.
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Coupled parabolic systems

Consider

ut(t,x) = Σuxx(t,x)+Λ(x)u(t,x)

x ∈ [0,1], t > 0, u ∈ Rn

Σ =









ε1 0 . . . 0
0 ε2 . . . 0
... ... . . . ...

0 0 . . . εn









, Λ(x) =









λ11(x) λ12(x) . . . λ1n(x)
λ21(x) λ22(x) . . . λ2n(x)

... ... . . . ...

λn1(x) λn2(x) . . . λnn(x)









with εi > 0 ordered, i.e., ε1 > ε2 > .. . > εn > 0, and boundary conditions

u(0, t) = 0,

u(1, t) = U(t)

with U ∈ Rn.



Backstepping approach

Consider the Backstepping Transformation :

w(t,x) = u(t,x)−
∫ x

0
K(x,ξ)u(t,ξ)dξ

with K(x,ξ) a n×n matrix of kernels, and w verifies the Target System :

wt(t,x) = Σwxx(t,x)−Cw(t,x)−G(x)wx(0, t),

with C and G(x):

C =









c1 0 . . . 0
0 c2 . . . 0
...

... . . . ...

0 0 . . . cn









, G =













0 0 . . . 0 0
g21(x) 0 . . . 0 0

...
... . . . ...

...

g(n−1)1(x) g(n−1)2(x) . . . 0 0
gn1(x) gn2(x) . . . gn(n−1)(x) 0













where c1,c2, . . . ,cn > 0. Control law is then

U(t) =
∫ 1

0
K(1,ξ)u(t,ξ)dξ

The challenge is to prove that K(x,ξ) exists and has good properties −→ Kernel equa-

tions



Kernel equations

ΣKxx−KξξΣ = KΛ(ξ)+CK,

with b.c.

G(x) = −K(x,0)Σ,

K(x,x)Σ = ΣK(x,x),

C+Λ(x) = −ΣKx(x,x)−Σ
d

dx
K(x,x)−Kξ(x,x)Σ.

First b.c. with structure of G becomes:

Ki j(x,0) = 0, ∀ j ≥ i,

and

gi j(x) =−Ki j(x,0)ε j, ∀ j < i,
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G(x) = −K(x,0)Σ,
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d
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First b.c. with structure of G becomes:
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Kernel equations

ΣKxx−KξξΣ = KΛ(ξ)+CK,

with b.c.

G(x) = −K(x,0)Σ,

K(x,x)Σ = ΣK(x,x),

C+Λ(x) = −ΣKx(x,x)−Σ
d

dx
K(x,x)−Kξ(x,x)Σ.

Second b.c. is:

Ki j(x,x) = 0, ∀ j &= i,

(no boundary condition for Kii(x,x) )



Kernel equations

ΣKxx−KξξΣ = KΛ(ξ)+CK,

with b.c.

G(x) = −K(x,0)Σ,

K(x,x)Σ = ΣK(x,x),

C+Λ(x) = −ΣKx(x,x)−Σ
d

dx
K(x,x)−Kξ(x,x)Σ.

Third boundary condition:

0 = λi j(x)+δi jci+Ki jξ(x,x)ε j + εiKi jx(x,x)+ εi
d

dx

(

Ki j(x,x)
)

,



Duplicating the kernel equations

Key idea (“duplication”): define

L(x,ξ) =
√

ΣKx(x,ξ)+Kξ(x,ξ)
√

Σ −→ Li j(x,x) =
√

εiKi jx(x,x)+
√

ε jKi jξ(x,x)

Then we can rewrite the “duplicated” kernel equations as

√
ΣKx+Kξ

√
Σ = L

√
ΣLx−Lξ

√
Σ = KΛ(ξ)+CK

Same structure as in the coupled hyperbolic result!

Third boundary condition becomes:

i = j: 0 = λii(x)+ ci+2εi(Kiix(x,x)+Kiiξ(x,x)) −→ Lii(x,x) =−λii(x)+ci
2
√

εi

i &= j: 0 = λi j(x)+(εi− ε j)Ki jx(x,x) −→ Li j(x,x) =− λi j(x)√
εi+

√
ε j



Duplicating the kernel equations

The boundary conditions therefore are:

• If i = j

Lii(x,x) = −
λii(x)+ ci

2
√

εi

Kii(x,0) = 0

• If i < j

Ki j(x,x) = Ki j(x,0) = 0

Li j(x,x) = −
λi j(x)√
εi +

√
ε j

• Finally if i > j

Ki j(x,x) = 0

Ki j(1,ξ) = li j(ξ)

Li j(x,x) = −
λi j(x)√
εi +

√
ε j

and the additional condition gi j(x) =−Ki j(x,0)ε j

Same structure as in the coupled hyperbolic result!



Extension to reaction-advection-diffusion systems with

spatially-varying coefficients

The method can be extended to

ut = ∂x (Σ(x)ux)+Φ(x)ux+Λ(x)u



Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems

• Extension to n-balls &

• Rijke Tube

• Mixed systems

• Some open problems



Reaction-diffusion equation on an n-dimensional ball

Let the state u = u(t,!x), with!x = [x1,x2, . . . ,xn]T , verify

∂u

∂t
= ε

(

∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n

)

+λu = ε+n u+λu,

for constant ε > 0, λ(r,!θ), and for t > 0, in the n-ball Bn(R) defined as

Bn(R) = {!x ∈ R
n : ‖!x‖< R} ,

with b.c. on the boundary of Bn(R), the (n−1)-sphere Sn−1(R):

Sn−1(R) = {!x ∈ R
n : ‖!x‖= R} .

The b.c. is of Dirichlet type:

u(t,!x)
∣

∣

∣

!x∈Sn−1(R)
=U(t,!x)

where U(t,!x) is the actuation variable.



Ultraspherical coordinates

The n-ball domain is well described in n-dimensional spherical coordinates, also known as

ultraspherical coordinates:

• one radial coordinate r, r ∈ [0,R).

• n− 1 angular coordinates: !θ = [θ1,θ2, . . . ,θn−1]
T , with θ1 ∈ [0,2π) and θi ∈ [0,π]

for 2 ≤ i ≤ n−1.

Definition:

x1 = r cosθ1 sinθ2 sinθ3 . . .sinθn−1,

x2 = r sinθ1 sinθ2 sinθ3 . . .sinθn−1,

x3 = r cosθ2 sinθ3 . . .sinθn−1,
...

xn−1 = r cosθn−2 sinθn−1,

xn = r cosθn−1.



Laplacian in ultraspherical coordinates

Writing the reaction diffusion equation in ultraspherical coordinates

ut =
ε

rn−1
∂r

(

rn−1∂ru
)

+
1

r2
+∗

n−1 u+λu,

u(t,R,!θ ) = U(t,!θ ),

where +∗
n−1 is called the Laplace-Beltrami operator and represents the Laplacian over the

(n−1)-sphere.

It is defined recursively as

+∗
1 =

∂2

∂θ2
1

,

+∗
n =

1

sinn−1 θn

∂

∂θn

(

sinn−1 θn
∂

∂θn

)

+
+∗

n−1

sin2 θn
,

Example:

+∗
2 =

1

sinθ2

∂

∂θ2

(

sinθ2
∂

∂θ2

)

+
1

sin2 θ2

∂2

∂θ2
1

.



Designing a boundary feedback law

• Exploit periodicity in!θ by using Spherical Harmonics

• Apply the backstepping method to each harmonic coefficient

• Solve the backstepping kernel equations to find a feedback law for each harmonic

• Re-assemble the feedback law in Spherical Harmonics back to physical space



Spherical Harmonics

Develop u and U in term of Spherical Harmonics coefficients um
l and Um

l :

u(t,r,!θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

um
l (r, t)Y

n
lm(

!θ), U(t,!θ) =
l=∞

∑
l=0

m=N(l,n)−1

∑
m=0

Um
l (t)Y n

lm(
!θ),

N(l,n): number of (linearly independent) n-dimensional spherical harmonics of degree l

N(l,n) =
2l +n−2

l

(

l +n−3
l −1

)

, l > 0; N(0,n) = 1

Y n
lm(

!θ): m-th order n-dimensional spherical harmonic of degree l

Coefficients are defined as:

um
l (r, t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
u(t,r,!θ)Ȳ n

lm(
!θ)sinn−2 θn−1 sinn−3 θn−2 . . .sinθ2d!θ,

Um
l (t) =

∫ π

0
. . .

∫ π

0

∫ 2π

0
U(t,!θ)Ȳ n

lm(
!θ)sinn−2 θn−1 sinn−3 θn−2 . . .sinθ2d!θ,

(d!θ = dθn−1dθn−2 . . .dθ2dθ1, Ȳ n
lm is the complex conjugate of Y n

lm)



Spherical Harmonics

The n-dimensional spherical harmonics are eigenfunctions for the Laplacian +∗
n−1:

+∗
n−1Y n

lm =−l(l +n−2)Y n
lm.

Thus, each harmonic coefficient um
l (t,r) for l ∈ N and 0 ≤ m ≤ N(l,n), verifies

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l ,

evolving in r ∈ [0,R], t > 0, with boundary conditions

um
l (t,R) = Um

l (t),

The PDEs for the harmonics are not coupled: we can independently design each Um
l and

later assemble all of the them to find an expression for U .



Backstepping control of Spherical Harmonics coefficients

To design Um
l (t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lmr,ρ)um
l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = Rwe find Un as

Un(t) =
∫ R

0
Kn

lm(R,ρ)un(t,ρ)dρ
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ε
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The transformation is

wm
l (t,r) = um
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0
Kn
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l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = Rwe find Un as

Un(t) =
∫ R

0
Kn

lm(R,ρ)un(t,ρ)dρ



Backstepping control of Spherical Harmonics coefficients

To design Um
l (t) seek transformation of

∂tu
m
l =

ε

rn−1
∂r

(

rn−1∂rum
l

)

− l(l +n−2)
ε

r2
um

l +λum
l

into the (stable) target system

∂tw
m
l =

ε

rn−1
∂r

(

rn−1∂rwm
l

)

− l(l +n−2)
ε

r2
wm

l

with boundary conditions

wm
l (t,R) = 0

The transformation is

wm
l (t,r) = um

l (t,r)−
∫ r

0
Kn

lm(r,ρ)u
m
l (t,ρ)dρ

with kernels Kn
lm to be found.

Substituting at r = R we find Um
l (t) as

Um
l (t)(t) =

∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ



Kernel equation

The control kernels Kn
lm(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
−

1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−

λr

2ε



Kernel equation

The control kernels Kn
lm(r,ρ) are found, for a given n ≥ 2 and each l,m, from

1

rn−1
∂r

(

rn−1∂rKn
lm

)

−∂ρ

(

ρn−1∂ρ

(

Kn
lm

ρn−1

))

− l(l +n−2)

(

1

r2
−

1

ρ2

)

Kn
lm =

λ

ε
Kn

lm.

with BC

λ+2ε
d

dr

(

Kn
lm(r,r)

)

= 0

Kn
lm(r,0) = 0

(n−2)∂ρKn
lm(r,ρ)|ρ=0 = 0

The first BC integrates (using Kn
lm(0,0) = 0) to

Kn
lm(r,r) = −

∫ r

0

λ

2ε
dρ =−

λr

2ε



Explicit Kernel equation solution and feedback law

It is found that

Kn
lm(r,ρ) =−ρ

(ρ

r

)l+n−2 λ

ε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

Thus the feedback law for each spherical harmonic is

Um
l (t) =

∫ R

0
Kn

lm(R,ρ)u
m
l (t,ρ)dρ =

∫ R

0
−ρ
(ρ

R

)l+n−2 λ

ε

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)
um

l (t,ρ)dρ



Explicit feedback law

Using some spherical harmonics machinery one obtains an explicit feedback law

U(t,θ) = −
λ

ε

∫ R

0
ρ

I1

[

√

λ
ε(R

2−ρ2)

]

√

λ
ε(R

2−ρ2)

×
[∫ π

0
. . .

∫ π

0

∫ 2π

0
P(R,ρ,!θ,!φ)u(t,ρ,!φ)ρn−1 sinn−2 φn−1 sinn−3 φn−2 . . .sinφ2d!φ

]

dρ

where P(R,ρ,!θ,!φ) is the Poisson kernel for the n-ball.

Back in rectangular coordinates

U(t,!x) = −
1

Area(Sn−1)

√

λ

ε

∫
Bn(R)

I1

[
√

λ

ε
(R2−‖!ξ‖2)

]

√

R2−‖!ξ‖2

‖!x−!ξ‖n
u(t,!ξ)d!ξ,

where the integral is extended to the complete n-ball Bn(R) and!x ∈ Sn−1(R).



Extension to spatially-varying λ

Consider now the same problem but with spatially-varying coefficient λ:

∂u

∂t
= ε+n u+λ(!x)u,

u(t,!x)
∣

∣

∣

!x∈Sn−1(R)
= U(t,!x)

the question is: can backstepping still be applied?



Extension to spatially-varying λ

Consider now the same problem but with spatially-varying coefficient λ(!x):

∂u

∂t
= ε+n u+λ(!x)u,

u(t,!x)
∣

∣

∣

!x∈Sn−1(R)
= U(t,!x)

the question is: can backstepping still be applied?

Consider two cases:

• Sphere

• Disk (harder!)

Under a simplifying assumption, we solve the problem and get a taste of the challenges



Revolution symmetry condition

Revolution Symmetry Condition : if the initial conditions are symmetric (do not depend on

the angle or angles in 3-D), and U is chosen constant (do not depend on the position in

the boundary) nothing depends on the angle.

Typical engineering simplification. Equations becomes 1-D in radius, with singularities.

Disk: ut =
ε
r (rur)r +λ(r)u

Sphere: ut =
ε
r2

(

r2ur

)

r
+λ(r)u

We apply the method as before but only one kernel (corresponding to the constant Fourier

mode or Spherical Harmonic) is needed.



3-D case—revolution symmetry

Kernel equation is:

Krr +2
Kr

r
−Kρρ+2

Kρ

ρ
−2

K

ρ2
=

λ(r)

ε
K

K(r,0) = Kρ(r,0) = 0,

K(r,r) = −
λr

2ε
,

Define K(r,ρ) = ρ
r K̄(r,ρ). Then:

K̄rr − K̄ρρ =
λ(r)

ε
K̄

K̄(r,0) = 0,

K̄(r,r) = −
λr

2ε
,

which is the 1-D backstepping equation! Can be proved solvable by successive approxi-

mations (classical backstepping papers).



3-D case—revolution symmetry

Kernel equation is:

Krr +2
Kr

r
−Kρρ+2

Kρ

ρ
−2

K

ρ2
=

λ(r)

ε
K

K(r,0) = Kρ(r,0) = 0,

K(r,r) = −
λr

2ε
,

Define K(r,ρ) = ρ
r K̄(r,ρ). Then:

K̄rr − K̄ρρ =
λ(r)

ε
K̄

K̄(r,0) = 0,

K̄(r,r) = −
λr

2ε
,

which is the 1-D backstepping equation! Can be proved solvable by successive approxi-

mations (classical backstepping papers).



3-D case—revolution symmetry

For instance if λ is constant we directly get:

K(r,ρ) =
ρ

r
K̄(r,ρ) =

ρ2

r

c

ε

I1

[
√

c
ε

(

r2−ρ2
)

]

√

c
ε

(

r2−ρ2
)



2-D case—revolution symmetry

Interestingly, the 2-D case is harder than the 3-D case. Kernel equations are

Krr +
Kr

r
−Kρρ+

Kρ

ρ
−

K

ρ2
=

λ(ρ)

ε
K,

K(r,0) = 0,

K(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ

Define G =
√

r
ρK. Then, for G we have:

Grr −Gρρ+
G

4r2
−

G

4ρ2
=

λ(ρ)

ε
G

G(r,0) = 0,

G(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ.

and we can try to prove this equation solvable by using the classical successive approxi-

mation method.



2-D case—revolution symmetry

Interestingly, the 2-D case is harder than the 3-D case. Kernel equations are

Krr +
Kr

r
−Kρρ+

Kρ

ρ
−

K

ρ2
=

λ(ρ)

ε
K,

K(r,0) = 0,

K(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ

Define G =
√

r
ρK. Then, for G we have:

Grr −Gρρ+
G

4r2
−

G

4ρ2
=

λ(ρ)

ε
G

G(r,0) = 0,

G(r,r) = −
∫ r

0

λ(ρ)

2ε
dρ.

and we can try to prove existence & uniqueness of a solution by using the classical suc-

cessive approximation method.



2-D case—revolution symmetry

Define new variables α = r+ρ, β = r−ρ. The G equations become

4Gαβ+
G

(α+β)2
−

G

(α−β)2
=

λ
(

α−β
2

)

ε
G

G(β,β) = 0,

G(α,0) = −
∫ α/2

0

λ(ρ)

2ε
dρ.

This can be transformed into the (singular) integral equation

G(α,β) = −
∫ α/2

β/2

λ(ρ)

2ε
dρ+

∫ α

β

∫ β

0

λ
(

η−σ
2

)

4ε
G(η,σ)dσdη

+
∫ α

β

∫ β

0

ησ

(η2−σ2)2
G(η,σ)dσdη



2-D case—revolution symmetry

Define new variables α = r+ρ, β = r−ρ. The G equations become

4Gαβ+
G

(α+β)2
−

G

(α−β)2
=

λ
(

α−β
2

)

ε
G

G(β,β) = 0,

G(α,0) = −
∫ α/2

0

λ(ρ)

2ε
dρ.

This can be transformed into the (singular) integral equation

G(α,β) = −
∫ α/2

β/2

λ(ρ)

2ε
dρ+

∫ α

β

∫ β

0

λ
(

η−σ
2

)

4ε
G(η,σ)dσdη

+
∫ α

β

∫ β

0

ησ

(η2−σ2)2
G(η,σ)dσdη



2-D case—revolution symmetry

Try the successive approximations scheme, by defining

G0(α,β) = −
∫ α/2

β/2

λ(ρ)

2ε
dρ

and for k > 0,

Gk(α,β) =
∫ α

β

∫ β

0

λ
(

η−σ
2

)

4ε
Gk−1(η,σ)dσdη+

∫ α

β

∫ β

0

ησ

(η2−σ2)2
Gk−1(η,σ)dσdη

then, the solution to the integral equation would be

G =
∞

∑
k=0

Gk(α,β)

if the series converges.



2-D case—revolution symmetry

Call λ̄ = max(α,β)∈T ′

∣

∣

∣

∣

∣

∣

∣

λ
(

α−β
2

)

4ε

∣

∣

∣

∣

∣

∣

∣

.

Then one clearly obtains |G0(α,β)|≤ λ̄(α−β).

However when trying to substitute in G1 even the first integral is not so easy to perform.We

use an alternative approach based on the following Lemma:

Define, for n ≥ 0,k ≥ 0,

Fnk(α,β) =
λ̄n+1αnβn

n!(n+1)!
(α−β)

logk
(

α+β
α−β

)

k!
.

and Fnk = 0 if n < 0 or k < 0. Then Fnk is well-defined and nonnegative in the integration

domain for all n,k, Fnk(β,β) = 0 for all n and k, Fnk(α,0) = 0 if n ≥ 1 or k ≥ 1 and

F00(α,0) = α, and we have the following identity valid for n ≥ 1 or k ≥ 1.

Fnk =
∫ α

β

∫ β

0
λ̄F(n−1)k(η,σ)dσdη+4

∫ α

β

∫ β

0

ησ

(η2−σ2)2

(

Fn(k−1)(η,σ)−Fn(k−2)(η,σ)
)

dσd
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∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣
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logk
(

α+β
α−β

)

k!
.

and Fnk = 0 if n < 0 or k < 0. Then Fnk is well-defined and nonnegative in the integration

domain for all n,k, Fnk(β,β) = 0 for all n and k, Fnk(α,0) = 0 if n ≥ 1 or k ≥ 1 and

F00(α,0) = α, and we have the following identity valid for n ≥ 1 or k ≥ 1.

Fnk =
∫ α

β

∫ β

0
λ̄F(n−1)k(η,σ)dσdη+4

∫ α

β

∫ β

0

ησ

(η2−σ2)2

(

Fn(k−1)(η,σ)−Fn(k−2)(η,σ)
)

dσd



2-D case—revolution symmetry

We use the lemma to try to find estimates for the terms in the successive approximation

series:

|G0|≤ F00

next

|G1|≤
∫ α

β

∫ β

0
λ̄F00(η,σ)dσdη+

∫ α

β

∫ β

0

ησ

(η2−σ2)2
F00(η,σ)dσdη = F10+

F01

4

where we have used the formulas of the lemma. The next term is

|G2| ≤
∫ α

β

∫ β

0
λ̄

(

F10+
F01

4

)

dσdη+
∫ α

β

∫ β

0

ησ

(η2−σ2)2

(

F10+
F01

4

)

dσdη

= F20+
F11

4
+

F01+F02

16

If we keep going we find

|G3| ≤ F30+
F21

4
+

F11+F12

16
+

2F01+2F02+F03

64



2-D case—revolution symmetry

The key to find these numbers is the following. Call:

I1[F] =
∫ α

β

∫ β

0
λ̄F(η,σ)dσdη

I2[F] =
∫ α

β

∫ β

0

ησ

(η2−σ2)2
F(η,σ)dσdη

For instance, to find a bound on G4 we find the following:

I1[F30] = F40

I2[F30]+
I1[F21]

4
=

F31

4
I2[F21]

4
+

I1[F11+F12]

16
=

F21+F22

16
I2[F11+F12]

16
+

I1[2F01+2F02+F03]

64
=

2F11+2F12+F13

64
I2[2F01+2F02+F03]

64
=

5F01+5F02+3F03+F04

256
Thus,

|G4|≤ F40+
F31

4
+

F21+F22

16
+

2F11+2F12+F13

64
+

5F01+5F02+3F03+F04

256



2-D case—revolution symmetry

Based on this structure, we propose the following recursive formula for n > 0:

|Gn|≤ Fn0+
n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

where Ci j verifies Ci j =C(i−1)( j−1)+Ci( j+1), taking C11 = 1, Ci0 = 0, and Ci j = 0 if j > i,

for all i. This set of numbers, known as the “Catalan’s Triangle”, verifies many interesting

properties.

In particular it can be shown

Cii = 1.

Ci j =
i−1

∑
k= j−1

C(i−1)k.

which allows us to write the recursive formula



2-D case—revolution symmetry

Let us show in a table the first few numbers.

Ci j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

i = 1 1

i = 2 1 1

i = 3 2 2 1

i = 4 5 5 3 1

i = 5 14 14 9 4 1

i = 6 42 42 28 14 5 1

i = 7 132 132 90 48 20 6 1

i = 8 429 429 297 165 75 27 7 1

i = 9 1430 1430 1001 572 275 110 35 8 1

i = 10 4862 4862 3432 2002 1001 429 154 44 9 1

Catalan’s Triangle



2-D case—revolution symmetry

Now, since the solution verifies

|G|≤
∞

∑
n=0

|Gn(α,β)|

and we found

|Gn|≤ Fn0+
n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

We get

|G|≤
∞

∑
n=0

Fn0+
∞

∑
n=1

n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j

and we only need to prove convergence of this series.



2-D case—revolution symmetry

First term of the series:

∞

∑
n=0

Fn0 =
λ̄n+1αnβn

n!(n+1)!
(α−β) =

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ

For the next term, we use the fact that

∞

∑
n=1

n−1

∑
i=0

H(n, i) =
∞

∑
i=0

∞

∑
l=1

H(l + i, i)

Therefore

∞

∑
n=1

n−1

∑
i=0

j=n−i

∑
j=1

C(n−i) j

4n−i
Fi j =

∞

∑
i=0

∞

∑
l=1

j=l

∑
j=1

Cl j

4l
Fi j =

∞

∑
i=0

j=∞

∑
j=1





∞

∑
l= j

Cl j

4l



Fi j

It turns out that the parenthesis can be calculated and gives an exact sum for each j.



2-D case—revolution symmetry

To find the sum, consider first the generating function of the Catalan numbers Cl1:

f1(x) =
2

1+
√

1−4x

Remember that a generating function of a sequence of number is a function such that the

coefficients of its power series is exactly those of the sequence of numbers.

Thus,

f1(x) =C11+C21x+C31x2+ . . .=
∞

∑
l=1

Cl1xl−1

Therefore if we evaluate the function at x = 1/4 we find that

f1(
1

4
) =

∞

∑
l=1

Cl1
1

4l−1

thus we find

∞

∑
l=1

Cl1

4l
=

1

4

∞

∑
l=1

Cl j

4l−1
=

f1(
1
4)

4
=

1

2



2-D case—revolution symmetry

Following the previous argument, it is clear that

∞

∑
l= j

Cl j

4l
=

1

4

∞

∑
l= j

Cl j

4l−1
=

f j(
1
4)

4

where we define the generating function f j as

f j(x) =
∞

∑
l= j

Cl jx
l−1

Now since Cl2 = Cl1 but obviously C12 = 0, it is clear that f2 = f1−C11 = f1− 1. Thus

f2(1/4) = 1 and we find

∞

∑
l=2

Cl2

4l
=

f2(
1
4)

4
=

1

4



2-D case—revolution symmetry

To find successive generating functions we use the properties of the Catalan’s Triangle

and make the following claim:

fn(x) = fn−1(x)− x fn−2(x)

Based on this fact, we can now prove that

∞

∑
l= j

Cl j

4l
=

1

2 j

Thus we obtain

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
+

∞

∑
i=0

j=∞

∑
j=1

Fi j

2 j

=

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
+

∞

∑
i=0

j=∞

∑
j=1

λ̄i+1αiβi

i!(i+1)!
(α−β)

log j
(

α+β
α−β

)

2 j j!



2-D case—revolution symmetry

Summing the series

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ







j=∞

∑
j=0

log j
(

α+β
α−β

)

2 j j!






,

therefore

|G| ≤

√

λ̄

2
(α−β)

I1

[

2

√

λ̄αβ

]

2
√

αβ
e

log

(√

α+β
α−β

)

=

√

λ̄

2

√

α2−β2
I1

[

2

√

λ̄αβ

]

2
√

αβ

In physical variables r and ρ:

|G| ≤
√

λ̄
√

rρ

I1

[

2

√

λ̄(r2−ρ2)

]

2

√

r2−ρ2



2-D case—revolution symmetry

Finally, going back to the original K, we find

|K(r,ρ)| ≤ ρ
√

λ̄

I1

[

2

√

λ̄(r2−ρ2)

]

2

√

r2−ρ2

Thus, we have shown that the successive approximation series converges, with the solu-

tion K verifying the above bound. Uniqueness can be proved easily from the successive

approximation series.

Unfortunately, this approach does not seem to be extensible for other Fourier coefficients.



Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems

• Extension to n-balls & Symmetric disk

• Rijke Tube

• Mixed systems

• Some open problems



The Rijke Tube Experiment

Microphone signal at the onset of instability showing growth,and then saturation of the
limit cycle. A zoomed-in picture shows the periodic, but nonsymetric, limit-cycle beha-
vior.
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The Rijke Tube Experiment

Thermoacoustic instabilities are often encountered in steam and gas turbines,
industrial burners, and jet and ramjet engines.

These instabilities are undesirable and notorious difficult to model and study.

The absence of combustion process in the Rijke tube makes the modeling and
analysis more tractable.

The Rijke tube experiment provides an accessible platform to explore and study
thermoacoustic instabilities.
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Nonlinear mathematical model

The thermoacoustic oscillations can be captured using an one-dimensional model
of compressible gas dynamics (Euler equations)

ˆtfl(t, x) + v(t, x)ˆxfl(t, x) + fl(t, x)ˆxv(t, x) = 0, (1)

ˆtv(t, x) + ˆxv(t, x) + 1
fl(t, x)ˆxP (t, x) = 0, (2)

ˆtP (t, x) + “P (t, x)ˆxv(t, x) + v(t, x)ˆxP (t, x) = “
1
A

”(x ≠ x0)Q(t), (3)

Heat release dynamics:

·Q̇(t) = ≠Q(t) + lw(Tw ≠ Tgas)(Ÿ + Ÿv


|v(t, x0)|), (4)

Boundary conditions:

P (t, 0) = Pa + U(t), (5)
P (t, L) = Pa + f(v(t, L)), (6)
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Linearized mathematical model

Assume constant steady-state solution, (fl, v P ) = (fl, v, P ), ’t œ [0, +Œ),
’x œ [0, L], and subsonic conditions for the gas flow, i.e., v ¥ 0. Then,

ˆtṽ(t, x) + 1
fl

ˆxP̃ (t, x) = 0, (7)

ˆtP̃ (t, x) + “P ˆxṽ(t, x) = “
A

”(x ≠ x0)Q̃(t), (8)

and the linearized expression of the heat release dynamics

· ˙̃Q(t) = ≠Q̃(t) + f Õ(v)(Tw ≠ T gas)ṽ(t, x0), (9)

Boundary conditions:

P̃ (t, 0) = U(t), (10)

P̃ (t, L) = ZLṽ(t, L), (11)
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Representation in characteristic coordinates

Using the characteristic coordinates, the system (7)-(11) can be rewritten as

ˆtR1 + ⁄ˆxR1 = c1”(x ≠ x0)Q̃(t), (12)

ˆtR2 ≠ ⁄ˆxR2 = c1”(x ≠ x0)Q̃(t), (13)
R1(t, 0) = ≠R2(t, 0) + 2U(t), (14)
R2(t, L) = –R1(t, L), (15)

· ˙̃Q(t) = ≠Q̃(t) + c2(R1(t, x0) ≠ R2(t, x0)), (16)

with ⁄, –, c1, c2 > 0.
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Representation in characteristic coordinates

Schematic view of the jumping point at the solution of the PDE system (12)-(16).

The following relations are satisfied:

R1(t, x+
0 ) = R1(t, x≠

0 ) + c1Q̃(t),
R2(t, x≠

0 ) = R2(t, x+
0 ) + c1Q̃(t).
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Representation in characteristic coordinates

Now, we introduce the following state variables

R11(t, x) , R1(t, x), if x œ [0, x0]
R12(t, x) , R2(t, x), if x œ [0, x0]
R21(t, x) , R1(t, x), if x œ [x0, L]
R22(t, x) , R2(t, x), if x œ [x0, L]

and the rescaled spatial variable, so that everything evolves on the same domain:

z =
;

x
x0

if x œ [0, x0]
L≠x

L≠x0
if x œ [x0, L]
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Representation in characteristic coordinates

Then, the system (12)-(16) is equivalent to

ˆtR11(t, z) + ⁄1ˆzR11(t, z) = 0, (17)
ˆtR12(t, z) ≠ ⁄1ˆzR12(t, z) = 0, (18)
ˆtR21(t, z) ≠ ⁄2ˆzR21(t, z) = 0, (19)
ˆtR22(t, z) + ⁄2ˆzR22(t, z) = 0, (20)

The boundary conditions of (17)-(20) are given by

R11(t, 0) = ≠R12(t, 0) + 2U(t), (21)

R12(t, 1) = R22(t, 1) + c1Q̃(t), (22)

R21(t, 1) = R11(t, 1) + c1Q̃(t), (23)
R22(t, 0) = –R21(t, 0), (24)

· ˙̃Q(t) = ≠Q̃(t) + c2(R11(t, 1) ≠ R22(t, 1)). (25)
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Representation in characteristic coordinates

The boundary conditions represent two
effects: reflection of the acoustic waves; and
the feedback coupling between R21 and R22,
and between R11 and R12.

Under the right conditions the system
becomes unstable due to this feedback
between the states.
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Backstepping-based observer design

We design the observe as a copy of the plant (17)-(24) plus output injection terms:

ˆtR̂11(t, z) + ⁄1ˆzR̂11(t, z) = ≠p11(z)Ỹ (t), (26)

ˆtR̂12(t, z) ≠ ⁄1ˆzR̂12(t, z) = ≠p12(z)Ỹ (t), (27)

ˆtR̂21(t, z) ≠ ⁄2ˆzR̂21(t, z) = ≠p21(z)Ỹ (t), (28)

ˆtR̂22(t, z) + ⁄2ˆzR̂22(t, z) = ≠p22(z)Ỹ (t), (29)

·hrQ̂Õ(t) = ≠Q̂(t) + c2(R̂11(t, 1) ≠ R̂22(t, 1)) ≠ pQỸ (t), (30)

with Ỹ (t) = R21(t, 0) ≠ R̂21(t, 0).
The boundary conditions of (26)-(30) are given by

R̂11(t, 0) = ≠R̂12(t, 0) + 2U(t), (31)

R̂12(t, 1) = R̂22(t, 1) + c1Q̂(t), (32)

R̂21(t, 1) = R̂11(t, 1) + c1Q̂(t), (33)

R̂22(t, 0) = –R21(t, 0), (34)

p11, p12, p21, p22, and pQ are gains to be found.
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Target system

Define the error estimation R̃ij = Rij ≠ R̂ij , i, j = 1, 2, whose dynamics is given by

ˆtR̃11(t, z) + ⁄1ˆzR̃11(t, z) = p11(z)Ỹ (t), (35)

ˆtR̃12(t, z) ≠ ⁄1ˆzR̃12(t, z) = p12(z)Ỹ (t), (36)

ˆtR̃21(t, z) ≠ ⁄2ˆzR̃21(t, z) = p21(z)Ỹ (t), (37)

ˆtR̃22(t, z) + ⁄2ˆzR̃22(t, z) = p22(z)Ỹ (t), (38)

·hrQ̃Õ(t) = ≠Q̃(t) + c2(R̃11(t, 1) ≠ R̃22(t, 1)) + pQỸ (t), (39)

and boundary conditions

R̃11(t, 0) = ≠R̃12(t, 0), (40)

R̃12(t, 1) = R̃22(t, 1) + c1Q̃(t), (41)

R̃21(t, 1) = R̃11(t, 1) + c1Q̃(t), (42)

R̃22(t, 0) = –R̃21(t, 0) ≠ p0Ỹ . (43)
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Target system

To design the observer output injection gains, we map (35)-(43) to the following
appropriate target system:

ˆtŘ11(t, z) + ⁄1ˆzŘ11(t, z) = 0, (44)

ˆtŘ12(t, z) ≠ ⁄1ˆzŘ12(t, z) = 0, (45)

ˆtŘ21(t, z) ≠ ⁄2ˆzŘ21(t, z) = 0, (46)

ˆtŘ22(t, z) + ⁄2ˆzŘ22(t, z) = 0, (47)

·hrQ̌Õ(t) = ≠(1 + c1c2)Q̌(t) ≠ c2Ř22(t, 1), (48)

with boundary conditions

Ř11(t, 0) = ≠Ř12(t, 0), (49)

Ř12(t, 1) = Ř22(t, 1) + c1Q̌(t), (50)

Ř21(t, 1) = Ř11(t, 1) + c1Q̌(t), (51)

Ř22(t, 0) = 0. (52)
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Target system

The mechanism of the proof of stability of the
target system is based on this scheme.

R22 is identically zero for all t Ø ⁄≠1
2 .

By the cascade structure of the target system,
it follows that Q̌ æ 0 as t æ Œ.

Finally, by computing the explicit solution of
Ř11, Ř12 and Ř21, we get that the target
system is exponentially stable.
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Backstepping transformation

To map system (35)-(43) into (44)-(52), we consider the following backstepping
transformation:

R̃11(t, z) = Ř11(t, z) ≠
⁄ 1

0
P11(z, ›)Ř21(t, ›)d›, (53)

R̃12(t, z) = Ř12(t, z) ≠
⁄ 1

0
P12(z, ›)Ř21(t, ›)d›, (54)

R̃21(t, z) = Ř21(t, z) ≠
⁄ z

0
P21(z, ›)Ř21(t, ›)d›, (55)

Q̃(t) = Q̌(t) ≠
⁄ 1

0
PQ(›)Ř21(t, ›)d›, (56)

Note that P21 is the kernel of a Volterra-type integral transformation, whereas P11
and P12 are the kernels of a Fredholm-type integral transformation. PQ is a finite
dimensional kernel.
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Backstepping transformation

Differentiating (53)-(56) with respect to space and time, plugging the target
system equation and integrating by parts, we obtain that (35)-(39) is mapped into
(44)-(48) if and only if the kernels satisfy the following equations:

⁄2ˆ›P11(z, ›) ≠ ⁄1ˆzP11(z, ›) = 0, (57)
⁄2ˆ›P12(z, ›) + ⁄1ˆzP12(z, ›) = 0, (58)
ˆ›P21(z, ›) + ˆzP21(z, ›) = 0, (59)
·hr⁄2P Õ

Q(›) = PQ(›) ≠ c2P11(1, ›), (60)

and

P11(z, 1) = 0, (61)
P12(z, 1) = 0, (62)

PQ(1) = ≠ c2
·hr⁄2

, (63)

P11(0, ›) = ≠P12(0, ›), (64)
P12(1, ›) = c1PQ(›), (65)
P21(1, ›) = P11(1, ›) + c1PQ(›). (66)
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Backstepping transformation

The observer gains are given by

p11(z) = ⁄2P11(z, 0), (67)
p12(z) = ⁄2P12(z, 0), (68)
p21(z) = ⁄2P21(z, 0), (69)

pQ = ·hr⁄2PQ(0). (70)
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Well-posedness of the kernel equations and invertibility of the
transformation

The existence and uniqueness of the solution of the kernel equations were shown in

- de Andrade, G. A., Vazquez, R., and Pagano, D. J. (2018). Backstepping stabilization of a linearized
ODE–PDE Rijke tube model. Automatica (pp. 98–109)

Since these equations have a simple structure, a closed solution can be obtained by
using the method of characteristics.

In particular, the solution is piecewise-differentiable, where the number of pieces of
the solution depends on the position of the heat release element.

Finally, the transformation (53)-(56) is invertible, ensuring that the target system
and the observer error system have equivalent stability properties.
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Numerical solution of the kernel equations

Numerical solution of the kernel equations for the case ⁄1 < ⁄2, i.e., x0 > 1
2 L (the

heater element is near from the measured boundary).
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Experimental results

Real view of the Rijke tube experiment.
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Experimental results
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Time response of the measured and estimated acoustic pressure at the onset of
instability.
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Experimental results
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Detailed view of the measured and estimated acoustic pressure.
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Final remarks

The design, requires measurements from one boundary condition and the observer
gains can be computed analytically

The resulting kernels are piecewise differentiable, with the number of pieces
depending on the heat release position

As future works, we will combine the observer design proposed in this paper with
the backstepping controller that we have developed to produce real-life closed-loop
experiments.

The closed-loop experiments must be done in a real time framework because of the
fast dynamics of the system and large amount of computations required to obtain
the control law.
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Outline

• Foundations of backstepping: basic design for a 1D parabolic equation

• Coupled hyperbolic systems

• Coupled parabolic systems

• Extension to n-balls & Symmetric disk

• Rijke Tube

• Mixed systems

• Some open problems



Mixed hyperbolic-parabolic systems

vt (x, t) = εvxx(x, t)+λv(x, t)

v(0, t) = u(0, t)

v(1, t) = 0

ut (x, t) = ux (x, t)+µ(x)v(x, t)+g(x)v(0, t)+
∫ x

0
f (x,y)v(y, t)dy

u(1, t) = U (t)

(x, t) ∈ [0,1]× [0,∞)

Strategy: two possible transformations



Target system & transformation number 1

ηt(x, t) = εηxx(x, t)− cη(x, t)

η(1, t) = 0

η(0, t) = ω(0, t)

ωt(x, t) = ωx(x, t)+µ(x)η(x, t)

ω(1, t) = 0

Transformation:

η(x, t) = v(x, t)−
∫ 1

x
p(x,y)v(y, t)dy

ω(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy−

∫ 1

0
l(x,y)v(y, t)dy

Control: U (t)=
∫ 1

0 k(1,y)u(y, t)dy+
∫ 1

0 l(1,y)v(y, t)dy



Kernel equations number 1

For 0 ≤ y ≤ x ≤ 1:

kx (x,y) = −ky (x,y)

k(x,0) = εly(x,0)−g(x)+
∫ x

0
k(x,y)g(y)dy

For 0 ≤ x,y ≤ 1:

lx(x,y) = εlyy(x,y)+λl(x,y)−h(x− y)

[

k(x,y)µ(y)+ f (x,y)−
∫ x

y
k(x,s) f (s,y)ds

]

l(x,0) = 0, l (x,1) = 0, l(0,y) = p(0,y)

For 0 ≤ x ≤ y ≤ 1:

pxx(x,y)− pyy(x,y) =
λ+ c

ε
p(x,y)

p(x,1) = 0

p(x,x) =
λ+c

2ε
(x−1)



Target system & transformation number 2

Target system 1 enough for stability but it requires very large c, thus large controls.

Thus a second cleaner system is better:

ηt(x, t) = εηxx(x, t)− cη(x, t)

η(1, t) = 0

η(0, t) = ω(0, t)

ωt(x, t) = ωx(x, t)

ω(1, t) = 0

Now arbitrary c works! The transformation is the same:

η(x, t) = v(x, t)−
∫ 1

x
p(x,y)v(y, t)dy

ω(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy−

∫ 1

0
l(x,y)v(y, t)dy

Control: U (t)=
∫ 1

0 k(1,y)u(y, t)dy+
∫ 1

0 l(1,y)v(y, t)dy



Kernel equations number 2

Price to pay: kernel equations are more involved

For 0 ≤ y ≤ x ≤ 1:

kx (x,y) = −ky (x,y)

k(x,0) = εly(x,0)−g(x)+
∫ x

0
k(x,y)g(y)dy

For 0 ≤ x,y ≤ 1:

lx(x,y) = εlyy(x,y)+λl(x,y)−h(x− y)

[

k(x,y)µ(y)+ f (x,y)−
∫ x

y
k(x,s) f (s,y)ds

]

−δ(y− x)µ(y)

l(x,0) = 0, l (x,1) = 0, l(0,y) = p(0,y)

For 0 ≤ x ≤ y ≤ 1:

pxx(x,y)− pyy(x,y) =
λ+ c

ε
p(x,y)

p(x,1) = 0

p(x,x) =
λ+c

2ε
(x−1)
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Some open problems

• Underactuated coupled hyperbolic and parabolic systems.

• Robustness properties of backstepping controllers.

• Non-strict-feedback terms (terms that are not “spatially-causal”).

• Reaction-diffusion equation in the n-ball with non-constant diffusion.



Design on the disk with λ(r,θ)

ut =
ε

r
(rur)r +

ε

r2
uθθ+λ(r,θ)u,

It is not possible to use spherical harmonics (they are no longer eigenfunctions that de-

couple the problem).

Pose a physical-space transformation:

w = u−
∫ r

0

∫ π

−π
K(r,ρ,θ,ψ)u(ρ,ψ)dψdρ,

to transform the u equation into the target system

wt =
ε

r
(rwr)r +

ε

r2
wθθ,



Design on the disk with λ(r,θ)

The kernel verifies the ultrahyperbolic equation

Krr +
Kr

r
−Kρρ+

Kρ

ρ
−

K

ρ2
−

Kθθ

r2
+

Kψψ

ρ2
=

λ(ρ,ψ)

ε
K

with BC

K(r,ρ,0,ψ) = K(r,ρ,π,ψ)

K(r,ρ,θ,0) = K(r,ρ,θ,π)

K(r,0,θ,ψ) = 0,∫ π

−π
K(r,r,θ,ψ)u(r,ψ)dψ = −

∫ r

0

λ(ρ,θ)

2ε
dρu(r,θ),

this last boundary condition can be verified if

lim
ρ→r

K(r,ρ,θ,ψ) = −δ(θ−ψ)
∫ r

0

λ(ρ,θ)

2ε
dρ.

We don’t know how to solve, only know there is a solution for constant λ!

K(r,ρ,θ,ψ) =−ρ
λ

2πε

I1

[

√

λ
ε(r

2−ρ2)

]

√

λ
ε(r

2−ρ2)

r2−ρ2

r2+ρ2−2rρcos(θ−ψ)
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• In these times of “academic distancing”: open webinar in the topic of DPS control.

• Format: bi-weekly, 1-hour seminar, given by volunteers willing to present their results. Open to everyone!

• Time: Tuesdays 17-18 (Central European Time), 8-9 am (PDT), 11 am-12 pm (EDT). Dear Asian colleagues: sorry :(

• Mailing list: Send an email to Jean Auriol(jean.auriol@centralesupelec.fr) if you want to be included.

• To give a talk: Send an email to Rafael Vazquez(rvazque1@us.es) if you want to volunteer.

• Website: http://aero.us.es/DPSOnlineSeminar/Seminar.html

http://centralesupelec.fr
http://us.es
http://aero.us.es/DPSOnlineSeminar/Seminar.html

