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Motivation

We are interested to systems of type
Z(t) = f(Z(),U(t),  Z(0) = Zo,

where Z(t) € H is the state of the system at time ¢, U(t) € U is the
control, Z is the initial state and f: H xU — H.

Controllability

Stabilization by feedback (or closed loop)




Motivation

Controllability

The possibility to find a time T' > 0 and a control U(t) allowing to bring
the state Z from a given initial state Zy to a final state Z; at time 7.

— Exact controllability, null controllability, approximate controllability,
global, local, at finite time,...

Stabilization by feedback (or closed loop)




Motivation

Controllability

Stabilization by feedback (or closed loop)

Bring the state Z closed to a state Z; by taking U in the form
U(t)=K(Z(t)), ie.

1Z(t) = Z; >0 when t — +oc.

— Exponential stability, polynomial stability,...



Motivation

Korteweg-de Vries equation 1895 (Russell 1834, Boussinesq
1877, Bona-Winther 1983)

Yyi(w,t) + ymz(l‘,t) + Yo (2, t)+y (2, )y (z,1) =0

Model water waves propagating along a shallow canal.




The stability problem

The goal is to study the stability of the following non-linear KdV
equation with a boundary feedback term on a bounded domain

yt(“% t) + yxxa:(xv t) + y$($7 t)
+y(x, )y (x,t) =0, =€ (0,L),t>0,

y(0,t) = y(L,t) =0, t>0, (1)
Yo (L, t) = ayz(0,1), t>0,
y(a:,O) - y()(ﬂf), S (O,L),

In the above equations:
@ y(z,t) : amplitude of the water wave at position x at time ¢;
@ L > 0 is the length of the spacial domain;
@ « is a real constant parameter;
@ yo € L0, L).



Known results with boundary feedback

yt(.’L', t) + yzxw(xa t) + ym(xa t)
+y(@, t)ys(z,t) =0, z€(0,L),t>0,

y(oat) = y(L7t> =0, t>0,
yl(L‘t):ayI(Ot)v t>07
y(z,0) = yo(x), z e (0,L).

Stability result [Zhang 1994 (L = 1), Perla Menzala,
Vasconcellos, Zuazua 2002]

For L¢ N = {2m/k2+’§l+l2, k,l e N*} and |a] < 1, local

exponential stability result (i.e. for small initial data).

Remark

If L = 27, there exists a solution (y(x,t) = 1 — cosx) of the
linearized system around O which has a constant energy.




Known results with internal feedback

yt(fb,t) +yx:m:($,t) +yx( ) ( )y(l‘,t)

+y(x, t)ys(z,t) = 0 x € (0,L),t>0,
y(ovt) = y(L’t) = yz(L t) = t>0,
y(l‘,O) - y0($)7 S (OvL)a

where a is a nonnegative function in L*°(0, L) such that
a(x) > ap > 0 a.e. in an open nonempty subset w of (0, L).

Stability result [Perla Menzala, Vasconcellos, Zuazua 2002,
Pazoto 2005]

For any L > 0, local exponential stability result (i.e. for small
initial data) and semi-global stability result (i.e. for any initial data
in a given ball).




The controllability problem with one control

The second question is to study the controllability of the following
non-linear KdV equation with a boundary control on a bounded
domain

yt(l', t) + ywxﬂf(w: t) + yz(ﬂc, t)
+y(z, t)yz(z,t) =0, xe€(0,L),t>0,

y(0,t) = y(L,t) =0, t>0, (2)
Yo (L, 1) = u(t), t>0,
y($’0) = yO(x)a x € (OaL)v

In the above equations:
@ y(xz,t) : amplitude of the water wave at position x at time ¢;
@ L > 0 is the length of the spacial domain;
@ u(t) is the control in L2(0,7);
e yo € L0, L).



Known results with one control

Theorem (Rosier 1997)

@ KdV equation linearized around 0 is exactly controllable in

L%(0, L) iff L ¢ {2my/ 2H0HEL | ] € N*}.

o If L ¢ {QW\/W, k,l € N*}, then KdV equation is
locally exactly controllable.

Theorem ([Coron, Crépeau 2004, [Cerpa 2007], [Cerpa,
Crépeau 2009])

For all L > 0, KdV equation is locally exactly controllable at a
time 1" large enough.
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The first problem at a glance

The first main goal is to study the stability of the following
non-linear KdV equation with a boundary feedback delayed term

yt(l‘, t) + y:p:px(xa t) + yz(l'a t)

+y(z, t)y.(z, t) =0, xz€(0,L),t>0,
y(0,t) = y(L,t) =0, t>0, (3)
Yo (L, t) = ayz(0,6)+By. (0,1 — h), t>0,
ySL(Ot) = Z()(t)a te (_ha 0)7
y(x70) :yo(.f), LS (OvL)v

y(z,t) : amplitude of the water wave at position = at time ¢;
h > 0 is the delay;

L > 0 is the length of the spacial domain;

« and 3 # 0 are real constant parameters;

yo € L2(0, L) and zy € L?(—h,0).



Energy

Let us choose the following definition of the energy of system (3):

L 1
B®) = [ otdo+ |3lh [ 20,0~ ho)d.
0 JO

Moreover, we will assume, that the parameters a and [ satisfy the
following limitation:
la] + (5] < 1.

Goal
@ Long-time behavior of the energy E(t)
@ Exponential stability: E(t) < Ce "'E(0), Vt > 0

@ Robustness with respect to the delay




Previous results for equations with delay

Consider, for instance, the wave equation with boundary feedback
delay:

(2, t) — ugg(x,t) =0 xz e (0,L),t>0,
u(0,t) =0, t>0,
ug(L,t) = —aug(L,t)—Pu (L, t —h), t>0,
u(L,t) = zo(t), t € (=h,0),
u(x,0) = ug(z), u(x,0) = uy () x € (0,L).
Assumption
0<f<a

If it is not the case, it can be shown that instabilities may appear:
@ Datko 1988, Datko, Lagnese, Polis 1986 with a =0

@ Nicaise, Pignotti 2006 in the more general case for the wave
equation (see also Nicaise, V. 2010).



Strategy for the well-posedness

|deas [Rosier 1997]

@ Well-posedness result of the linear equation, with a priori
estimates and regularity of the solutions,

@ KdV linear equation with a right hand side,

@ Well-posedness result of the nonlinear equation by a fixed
point argument.




The linear KdV equation

We begin by proving the well-posedness of the KdV equation
linearized around 0, that writes

y(0,t) = y(L,t) =0, t>0,
Yo (L, t) = oy, (0,t) + By, (0.t — h), t >0,
y2(0,t) = 20(t), t € (—h,0),

y(2,0) = o), re(0,L).



Taking into consideration of the delay

Following Nicaise and Pignotti 2006, we set

z(p,t) = y(0,t — ph)
for any p € (0,1) and ¢ > 0. Then z satisfies the transport

equation
hzi(p,t) + z,(p,t) =0, pe(0,1),t>0,
2(0,t) = y,(0,1), t >0,
Z(pa 0) = ZO(_ph)7 pE (07 1)

Consequently, (4) can be written as

yt(xat)+y$xx(x7t>+yﬂf(x7t) =0, z€ (OvL)a t>0,
hzi(p,t) + z,(p,t) =0, pe€(0,1),t>0,
y(0,t) = y(L,t) =0, t>0,

2(0,t) = y(0,1), t>0,

Yz (L, t) = ayz(0,t) + Bz(1,1), t>0,

z(p,0) = 20(—ph), p € (0,1),
y($,0) = y0($)7 T € (OvL)'




First order system

We introduce the Hilbert space H = L?(0, L) x L*(0,1) equipped
with the inner product

_ L .
<<Z>’<g>>:/o Z/Z]dx+|[3|h/0 zZ dp.

We denote by |[|-||;; the associated norm and this new norm is
equivalent to the usual norm on H.
We then rewrite (4) as a first order system:

U(t) = AU(t), t>0, (v _ Yo
{ U(0) = U € H, where U = z , Up = 20

and where the operator A is defined by

—Opze — Oy 0 . .
A= ( 0 7% 9, ) , with domain

D(A) = {(y,2) € H*(0, L) x H'(0,1) |y(0) = y(L) = 0,
Z(O) = yl’(o)vym(L) = O‘yx(o)JrBZ(l)} :



Well-posedness result

We define the space
B:=C([0,T),L*(0,L)) N L*(0,T, H'(0, L))

endowed with the norm

T
2
lylls = tg[lgf}:ﬁ] Hy(t)||L2(O,L) + (/0 Hy”Hl(o,L) dt)

To prove the well-posedness result of the non-linear KdV equation, we
exactly follow Coron-Crépeau 2004 (see also Cerpa 2014).

1/2

Proposition

Assume |a| + |5| < 1. There exist r > 0 and C > 0 such that for every
(yo,z0(—h-)) € H such that

1(yo, 20(=h))ll g <7,

there exists a unique solution of (3) which satisfies

||y||13 <C ||(y0a ZO(*}L'))HH :




Decay of the energy

Proposition

Let |a| + |5| < 1. Then, for any regular solution of (3) the energy
FE is non-increasing and satisfies

E'(t) = (o® — 1+8]) y2(0,t) + (8> — [8]) y2(0,¢ — h)
+ 20‘53/1(07 t)yx(oat - h’) <0.




Why FE is non-increasing ?

Differentiating £ and using the system, we obtain

d L
GEO = =2 [ 9 ena + o+ v 0,00
0 1
216 [ 5200, = 19)0,a(0. — i)y
0
= (1) — 520, 0)— |8 20,1 — ) + |1 (0. 1)
= (& =148)52(0,8) + (87 = |B) y7(0,t — h)
+2a8y5(0,t)yz(0,1 — h)
— (MX(),X(1)).
where

_ | w2(0,2) _ e =148 af
X(t) = [y;,,.(O./t B h)] and M = of 82— 18|



Lyapunov functionnal

We choose now the following Lyapunov functionnal
V(t) = E@) + mVa(t) + p2Va(l),

where 1 and ps € (0, 1) are positive constants that will be fixed
small enough later on, V is defined by

L
Va(t) = /0 vz, t)d,

and V5 is defined by

1
Va(t) = h/ (1= p)y;(0,t — hp)dp.
0

It is clear that the two energies E and V are equivalent, in the

sense that
E(t) <V(t) < (1 + max {Lm, 3] }) E(t).



First stability result [Baudouin, Crépeau, V. 2019]

Theorem

Assume |a| + |5| < 1 and assume that the length L fulfills

L < m/3.

Then, there exist r > 0 sufficiently small, such that for every
(vo,20) € L?(0, L) x L?(—h,0) satisfying

1o, 20)ll L2 (0, L) x L2(—h0) S T
the energy E of system (3) decays exponentially:
E(t) <kE(0)e 2"  t>0,

where for y11 > 0 and po € (0, 1) sufficiently small

. (97 = 3L% — 213 ?rn?)uy 7
v < min 5 , .
6L>(1 + L) 2(p2 + [B)h




|dea of the proof

Let y be a regular solution of (3). For any 7 > 0, we have

. L
Vo2V < (IXO.X0) 30 [ R 0ds
dt 0,
+@yhln +18) — z) [ 420, ~ ho)dp
Jo
L
+ 2y (1 + L) + 1) / y? (z,t)dx
2 L ’
+:U’1/ y3($,t>d$,
3" Jo
where 0.4)
. Y0,
X(t) = L/m((),t — h)]
and

- (14 Lpp)a? — 1+ B8] + pz aB (14 L) ]
af (1+ Luy) (1 + L) B> = |B]]



|dea of the proof

Thus we have,

—~ o ap 1 0
M =M+ mL (aB /52> + e <0 0>’

where M is defined as previously. As M is definite negative, we
easily prove that for py > 0 and p2 > 0 sufficiently small the
matrix M is definite negative, by continuity of the applications
Trace and Determinant.

Finally, for p11 and ps sufficiently small, using Poincaré inequality,
we obtain that

L
Vv < (L2 @+ L) +pm) SM) | et

T2

1
+h( +18) — ) [ 20,0~ ho)dp
JO

9 L
+ Ml/ v (x,t)dx.
37 Jo



|dea of the proof

Moreover, using Cauchy-Schwarz inequality and since H'(0, L)
embeds in L>°(0, L), we have:

L L
/0 P dde < yliegs /O y(,t)da

L\FLHyH}%ﬂ(o,L) Hy||L2(0,L)

L3 |(yo, z0(—h) Lz 111 31 0.1
L3/2

VAN VAN VAR VAN

2
r Iyl o -

Consequently, we have

% V(t) + 24V (1)

L2(2v(1+L 2L3/2 L
<( (2y (1 + Lpa) + 1) 3+ Wl)/ V2w, t)dz
0

2 3

1
+ (2vh(p2 +18]) — uz)/o y2(0, ¢ — hp)dp.



End of the proof

It is then sufficient to choose r small enough such that

3(3w* — L?
(223/22) (which is possible due to L < v/37) and v > 0
s
such that
\ < min | OF2 3L2 2L rntym
a 6L2(1 + L) 22+ 1BDA [
to have

d
pn V(t)+2vV(t) <0,

which is equivalent to V' (¢) < V(0)e=2" for any t > 0. Using the
equivalence between E and V, we obtain that

E(t) < (1 + max {Lm, B }) E0)e 2t t>0.

By density of D(A) in H, the results extend to arbitrary
(yO,ZO) € LQ(OaL) X LZ(_h7O)'



Observability result of the linear equation

Theorem
Assume that |a| + |3| < 1 is satisfied. Let L € (0,+00) \ N, where

[k2 + ki + 2
N:{zﬂ +3+,k,leN*}

and T > h. Then there exists C' > 0 such that for all
(yo, z0(—h-)) € H, we have

L 1 T
| @iz ain [ denpip <o [ R0+ 200)
0 JO 0

where (y, z) = S(.)(yo, 20(—h-)).

Ideas of the proof
o Contradiction argument (as in Rosier 1997);
@ Generalized Aubin-Lions theorem (Simon 1987).




Stability result for the linear KdV equation

Theorem
Assume that

Le (0,+0)\N and lal + |5 < 1.

Then, for every (yo, 20) € L?(0, L) x L?>(—h,0), the energy of the
linear system (4) decays exponentially.

Ideas of the proof

Combinate
@ the observability inequality,
@ the decay of the energy,

@ the fact that the system is invariant by translation in time.

Remark: The value of the decay rate can not be estimated in this
approach.



Exponential decay of small amplitude solutions of the
non-linear KdV equation [Baudouin, Crépeau, V. 2019]

Theorem

Assume that

Le (0,4+00)\N and |o|+ 8] < 1.

Then, there exists r > 0 such that for (yo, z0) € L?(0,L) x L?*(—h,0) st
1o, 20)ll L2 (0, L) x L2(=n0) S T

the energy of the non-linear system (3) decays exponentially.

Idea of the proof: follows Cerpa 2014

@ To decompose the solution as the solution of the linear system and
the solution of the linear system with trivial initial data and right
hand side;

@ Use the exponential stability of the linear system.




Numerical simulations: ¢ + In(FE(t)) for different values of
«,  and h (adaptation of [Colin, Gisclon, 2001])

T=1, L=1andyo(z) =1—cos(2mz) and zy(p) = 0.1sin(—27ph)

T T T T T T T T T T T T T T T T T T T 1
0 005 01 015 02 025 03 035 04 045 05 055 06 065 07 075 08 085 09 095 1
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First case: suppb C suppa

Ye (2, 1) + Yooo (T, 1) + yo (2, 1) + a(z)y (2, 1)

+b(x)y(x, t — h)+y(z, t)y.(x,t) =0, x€(0,L),t>0,
y(0,1) =y(L,t) = yo(L,t) = 0, t>0,
y(ZC,O) = yO(x)7 UAES (OaL)v
U(‘L't) - Zo(lf,t), rew,te (7h30)5

(5)
where a = a(z) and b = b(x) are nonnegative functions belonging to
L*>(0,L). We will also assume that suppb = w, b(x) > by > 0 a.e. in an
open, nonempty subset w of (0, L). We first assume that

deg > 0, b(x) + co < alx), a.e. inw.

We define the energy as

L
E(t) :/ 2(x,t)dx + h / / &(x)y=(x,t — hp)dpdzx,
0
where £ € L>°(0, L) is chosen such that supp £ = supp b = w and
b(x) + co < &(z) < 2a(z) — b(z) — co, T € w.



First case: suppb C suppa

L
GE0 = =200 -2 [ a@yie e

L
QA b(x)y(z, t)y(z, t — h,)der/wf(x)yz(:c,t)dx
/ E(x)y*(z,t — h)dx
20, +/' 2) ) (o )
/ a(x)y(z,t)dx+ / (b(x) — () y? (z,t — h)da.
0,L)\w

w

IN

Results [V. 2020]:

@ Local exponential stability result with a Lyapunov approach
for L < /3,

@ Local exponential stability result for any L > 0,

@ Semi-global stability result for any L > 0.




Second case: suppb ¢ suppa

In this case, the derivative of the energy E satisfies

iE(t) = —y2(0,t) — 2/ a(x)y?(z, t)dx
dt supp a

2/b lt—iz)dx

/E (x,t)de— | &(x)y“(z,t — h)dx

w

/ a(2)y?(a, o+ [ 0a) + @) .0z
+ [ (ble) ~ @)y (ot~ Wy,

A
|
QQ
8N
—~
=
~
~—
|
[N}

and so the energy is not decreasing in general due to the term
b(z) 4+ &(x) > 0 on w.



Second case: suppb ¢ suppa

Following Nicaise Pignotti 2014, we consider the next auxiliary problem, which
is "close” to (5) but whose the energy is decreasing:
gt(l’,t) + yxacx(aﬂ t) + yw(xzt) + y(xﬂf)yv‘?(xvt) + ( ) ('1" t)+b( )U(T t— h)
+&b(z)y(x,t) =0,
y(0,1) = y(L,t) = gz (L, t) =
;E(x, O) = yo(l‘),
y(z,t) = 20(z, 1),
(6)

where £ is a positive constant. Then the derivative of the energy E defined by

E(t):/OLgf(a;,t)d:chhg/w /0'1 b(x)7> (x,t — hp)dpdz,

with £ > 1 satisfies

S pw = RO -2 /Suppaamm f)dz — 2 / b(2)(z, )3 (. t — h)do

725/1) ~21f(11+£/b 7 17‘(11—{/1) 7 (z,t — h)dx
CR0,8) 2 / a(0)7 (. t)dz + / (b(z) — b(x))7 (x, t)da
+/< () — €b(x))7* (.t — h)da < 0.

IN



Second case: suppb ¢ suppa

We would like to use the classical perturbation result of Pazy:

Theorem (Pazy)

Let X be a Banach space and let A be the infinitesimal generator of a
Co semigroup T(t) on X satisfying ||T(t)|| < Me*t. If B is a bounded
linear operator on X, then A + B is the infinitesimal generator of a Cj
semigroup S(t) on X satisfying ||S(t)|| < Me@+MIBINt,

Strategy:

© Exponential stability for (6) linearized around 0 by the Lyapunov
approach for all L < v/37;

© Exponential stability for (5) linearized around 0 using the
perturbation theorem of Pazy for all L < /3w and for 1101l .o (0,1,

small enough (—a + v/BE 1Bl o< 0,1,y < 0);

© Local exponential stability for the nonlinear system (5) for all
L < /37 and for 1] 1, (0,7, small enough using the same proof as
previously.




Result [V. 2020]

Theorem

Let L < /37 and ¢ > 1. Then there exist § > 0 (depending on &,
L, h) and r > 0 sufficiently small such that if

16l Lo 0,2y < 0
for every (yo,20) € H satisfying

||(y07 ZU)HH S r,

the energy decays exponentially.

Remarks:
@ we can take a = 0,

o if h is large, the choice of b is such that [|b| ;e (g 1 is small.



Numerical simulations: ¢t — In(E(t)) for different values of
a and b

T =10, L =3, h=2and yo(z) = 1 — cos(2mx) and
zo(z, p) = (1 — cos(2mz)) cos(2mph) with suppa = suppb = (0, L/5)

-10
-15
-20
-25

-30

-35

40

45

a=4, b=1

-50 T T T T T T T T T 1



Some open problems

@ Time-varying delay;
@ Improve some previous results, for instance remove L < /37,
with an appropriate Lyapunov functional;

"o,
'

@ Time-delay on the nonlinear term "y(x,t — h)y.(x,t)
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Known results with one control

t) + yo(x, t)+y(z, )y (x,t) =0, x € (0,L),t>0,

Ye(2, 1) + Yaaa (T,

y(ovt) = (Lat) =0, t>0,

Yo (L, 1) = u(t), t>0,
y(.’L‘,O) = yo(SL‘), HAS (07L)7

Theorem (Rosier 1997)

@ KdV equation linearized around 0 is exactly controllable in L2(0, L)

iff L ¢ {2my/BEEER | ] € N+

o IfL¢ {Zw\/m k,1 € N*}, then KdV equation is locally

exactly controllable.

Theorem ([Coron, Crépeau 2004], [Cerpa 2007], [Cerpa,
Crépeau 2009])

For all L > 0, KdV equation is locally exactly controllable at a time T
large enough.




A tree-shaped network

We consider a tree-shaped network R of (IV + 1) edges ¢;, of
lengths ; >0, i € {1,.., N 4+ 1}, connected at one vertex that we
assume to be 0 for all the edges.

ey is parametrized on the interval I; := (—I1,0) and the N other
edges e; are parametrized on the interval I; := (0, ;).

O no control

@ control



The

nonlinear KdV equation on a tree

(yi,t +y7,3¢ +yT,’I"CQC +yvy7,7~)($,t) = 07 Z E {17 Tt 7N+ 1}7 x e Iia t > 07

yl(_llvt) = Oa t>0,
yz(llat) - 07
wa(lZ,t):hZ(f), VZG{?, ,N+1},t>0’
Y1 (O7t) = aiyi(ovt)v
N+1
yl:FOt Zﬂzyzx t>0,
N+1
Y1,22(0,) = Z; OTZ Yi.wx(0,1), t >0,
yi(xao):yio(x)7 VZE{I, ,N+1}71‘€[L‘,

® y;(z,t) : amplitude of the water wave on ¢; at z € I; at ¢,
® h; = h;(t) is the control on the edge e; belonging to L%(0,7),
@ «; and j3; are positive constants, y;0 € L%(I;),

@ the transmission conditions at the central node O are inspired by
[Mugnolo, Noja, Seifert 2018] and [Cavalcante 2018].



Notation

Goal: exact controllability

Forany T >0, I; > 0, yo € L?(R) and yr € L*(R), is it possible
to find V Neumann boundary controls h; € L?(0,T) such that the
solution gy on the tree shaped network of NV + 1 edges satisfies

y(-,0) =yo and y(-,T) = yr ?




Known results about the controllability of the KdV
equation on a network

Known results: star-shaped network
@ Ammari, Crépeau 2018: N + 1 controls for IV edges,
@ Cerpa, Crépeau, Moreno 2020: N controls for N edges.

Main differences
@ the sense of the propagation of the water wave on the first edge,
@ the transmission conditions at the central node,

@ the fact that we improve the previous results having one control less.




Well-posedness result

Proposition
Let T >0, l; > 0 and assume

N+1

Nl
3 iz <1 and > pF<1
i=2 l =2

Then, there exist r > 0 and C' > 0 such that for every yo € L*(R) and
h; € L?(0,T) verifying

N+1
lvoll 2=y + Z hill 20,0y < 75
i—2

there exists a unique y € B = C([0,T], L*(R)) N L*(0,T, H}(R)) which

satisfies
N+1
lylls <C <|y0||L2(R) +> ||hz‘||L2(o,T)> .

=2




The proof of the well-posedness result

Ideas of the proof

@ Linear equation with no control, then with regular initial data
and controls,

@ Linear equation with less regularity on the data using density
and multiplier arguments,

@ Linear equation with a source term,

@ Nonlinear equation by fixed point argument.




Controllability result [Cerpa, Crépeau, V. 2020]

Theorem

Let o; = VN, B; = and l; > 0 satisfying

1
VN
L:= max I </3m. (7)

N+1

=1,

There exists Tyin > 0 such that the system is locally exactly
controllable in any time T' > Ty, there exists r > 0 sufficiently
small such that for any yo € L*(R) and yr € L*(R) with

lvollp2ry <7 and lyrll 2y <7,

there exist N Neumann boundary controls h; € L*(0,T) such that
y satisfies y(-,0) = yo and y(-,T) = ypr for T > Trnin-




Remarks

Remark
This results can be extended to more general weights a; and ;.

Ideas of the proof

@ Linearize the system around a stationnary solution (here 0),

@ Show the exact controllability result of the linear KdV
equation (by linearity, we can take yo = 0) with an
observability inequality of the linear backward adjoint system
obtained by the multiplier method,

@ Apply a fixed point theorem to have the local exact
controllability result of the nonlinear equation.




Comments

Remarks

@ Drawback of this method: we do not obtain sharp conditions
on the lengths [; and on the time of control Tiyin.

@ Advantage: we get an explicit constant of observability.

Comment

A same type of result can be obtained for a general tree with

N + 1 external vertices, we get the controllability result with only
N Neumann controls.

Open questions

@ Observability inequality with a contradiction argument, case
of critical lengths.

@ |s it possible to reduce the number of controls at the external
vertices and still having a control result ?

@ Network with a circuit.




Thank you for your attention !
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