Some results about the stability and the controllability of the KdV equation

Lucie Baudouin, Eduardo Cerpa, Emmanuelle Crépeau and <u>Julie Valein</u>

Webinar Control in Times of Crisis December 15, 2020

1 Introduction

Stability with boundary delayed feedback

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Internal feedbacks with delay
- Boundary controllability on a tree

Introduction

- 2 Stability with boundary delayed feedback
 - Well-posedness and regularity results
 - Lyapunov approach for a first stability result
 - Second stabilization result Observability approach

- Internal feedbacks with delay
- 4 Boundary controllability on a tree

We are interested to systems of type

$$\dot{Z}(t) = f(Z(t), U(t)), \qquad Z(0) = Z_0,$$

where $Z(t) \in \mathcal{H}$ is the state of the system at time $t, U(t) \in \mathcal{U}$ is the control, Z_0 is the initial state and $f : \mathcal{H} \times \mathcal{U} \to \mathcal{H}$.

Controllability

Stabilization by feedback (or closed loop)

$$\dot{Z}(t) = f(Z(t), U(t)), \qquad Z(0) = Z_0$$

Controllability

The possibility to find a time T > 0 and a control U(t) allowing to bring the state Z from a given initial state Z_0 to a final state Z_f at time T.

 \hookrightarrow Exact controllability, null controllability, approximate controllability, global, local, at finite time,...

Stabilization by feedback (or closed loop)

$$\dot{Z}(t) = f(Z(t), U(t)), \qquad Z(0) = Z_0$$

Controllability

Stabilization by feedback (or closed loop) Bring the state Z closed to a state Z_f by taking U in the form U(t) = K(Z(t)), i.e.

 $||Z(t) - Z_f|| \to 0$ when $t \to +\infty$.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

 \hookrightarrow Exponential stability, polynomial stability,...

Motivation

Korteweg-de Vries equation 1895 (Russell 1834, Boussinesq 1877, Bona-Winther 1983)

$$y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) + y(x,t)y_x(x,t) = 0$$

Model water waves propagating along a shallow canal.

The goal is to study the stability of the following non-linear KdV equation with a boundary feedback term on a bounded domain

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) \\ + y(x,t)y_x(x,t) = 0, & x \in (0,L), t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ y_x(L,t) = \alpha y_x(0,t), & t > 0, \\ y(x,0) = y_0(x), & x \in (0,L), \end{cases}$$
(1)

In the above equations:

• y(x,t) : amplitude of the water wave at position x at time t;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- L > 0 is the length of the spacial domain;
- α is a real constant parameter;
- $y_0 \in L^2(0, L)$.

Known results with boundary feedback

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) \\ +y(x,t)y_x(x,t) = 0, & x \in (0,L), \ t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ y_x(L,t) = \alpha y_x(0,t), & t > 0, \\ y(x,0) = y_0(x), & x \in (0,L). \end{cases}$$

Stability result [Zhang 1994 (L = 1), Perla Menzala, Vasconcellos, Zuazua 2002]

For
$$L \notin \mathcal{N} = \left\{ 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}, k, l \in \mathbb{N}^* \right\}$$
 and $|\alpha| < 1$, local exponential stability result (i.e. for small initial data).

Remark

If $L = 2\pi$, there exists a solution $(y(x, t) = 1 - \cos x)$ of the linearized system around 0 which has a constant energy.

Known results with internal feedback

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) + a(x)y(x,t) \\ +y(x,t)y_x(x,t) = 0, & x \in (0,L), t > 0, \\ y(0,t) = y(L,t) = y_x(L,t) = 0, & t > 0, \\ y(x,0) = y_0(x), & x \in (0,L), \end{cases}$$

where a is a nonnegative function in $L^{\infty}(0, L)$ such that $a(x) \ge a_0 > 0$ a.e. in an open nonempty subset ω of (0, L).

Stability result [Perla Menzala, Vasconcellos, Zuazua 2002, Pazoto 2005]

For any L > 0, local exponential stability result (i.e. for small initial data) and semi-global stability result (i.e. for any initial data in a given ball).

The second question is to study the controllability of the following non-linear KdV equation with a boundary control on a bounded domain

$$\begin{pmatrix}
y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) \\
+ y(x,t)y_x(x,t) = 0, & x \in (0,L), t > 0, \\
y(0,t) = y(L,t) = 0, & t > 0, \\
y_x(L,t) = u(t), & t > 0, \\
y(x,0) = y_0(x), & x \in (0,L),
\end{cases}$$
(2)

In the above equations:

• y(x,t) : amplitude of the water wave at position x at time t;

- L > 0 is the length of the spacial domain;
- u(t) is the control in $L^2(0,T)$;
- $y_0 \in L^2(0, L)$.

Theorem (Rosier 1997)

- KdV equation linearized around 0 is exactly controllable in $L^2(0,L)$ iff $L \notin \{2\pi \sqrt{\frac{k^2+l^2+kl}{3}}, k, l \in \mathbb{N}^*\}.$
- If $L \notin \{2\pi \sqrt{\frac{k^2+l^2+kl}{3}}, k, l \in \mathbb{N}^*\}$, then KdV equation is locally exactly controllable.

Theorem ([Coron, Crépeau 2004], [Cerpa 2007], [Cerpa, Crépeau 2009])

For all $L>0,\,{\rm KdV}$ equation is locally exactly controllable at a time T large enough.

1 Introduction

- Stability with boundary delayed feedback
 - Well-posedness and regularity results
 - Lyapunov approach for a first stability result
 - Second stabilization result Observability approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 3 Internal feedbacks with delay
- 4 Boundary controllability on a tree

The first main goal is to study the stability of the following non-linear KdV equation with a boundary feedback delayed term

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) \\ +y(x,t)y_x(x,t) = 0, & x \in (0,L), t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ y_x(L,t) = \alpha y_x(0,t) + \beta y_x(0,t-h), & t > 0, \\ y_x(0,t) = z_0(t), & t \in (-h,0), \\ y(x,0) = y_0(x), & x \in (0,L), \end{cases}$$
(3)

- y(x,t) : amplitude of the water wave at position x at time t;
 h > 0 is the delay;
- n > 0 is the delay;
- L > 0 is the length of the spacial domain;
- α and $\beta \neq 0$ are real constant parameters;
- $y_0 \in L^2(0,L)$ and $z_0 \in L^2(-h,0)$.

Let us choose the following definition of the energy of system (3):

$$E(t) = \int_0^L y^2(x,t) dx + |eta| h \int_0^1 y_x^2(0,t-h
ho) d
ho.$$

Moreover, we will assume, that the parameters α and β satisfy the following limitation:

$$|\alpha| + |\beta| < 1.$$

Goal

- Long-time behavior of the energy ${\cal E}(t)$
- Exponential stability: $E(t) \leq Ce^{-\nu t}E(0), \forall t > 0$
- Robustness with respect to the delay

Previous results for equations with delay

Consider, for instance, the wave equation with boundary feedback delay:

$$\begin{cases} u_{tt}(x,t) - u_{xx}(x,t) = 0 & x \in (0,L), t > 0, \\ u(0,t) = 0, & t > 0, \\ u_x(L,t) = -\alpha u_t(L,t) - \beta u_t(L,t-h), & t > 0, \\ u_t(L,t) = z_0(t), & t \in (-h,0), \\ u(x,0) = u_0(x), u_t(x,0) = u_1(x) & x \in (0,L). \end{cases}$$

Assumption

$$0 \le \beta < \alpha$$

If it is not the case, it can be shown that instabilities may appear:

- Datko 1988, Datko, Lagnese, Polis 1986 with $\alpha = 0$
- Nicaise, Pignotti 2006 in the more general case for the wave equation (see also Nicaise, V. 2010).

Ideas [Rosier 1997]

- Well-posedness result of the linear equation, with a priori estimates and regularity of the solutions,
- KdV linear equation with a right hand side,
- Well-posedness result of the nonlinear equation by a fixed point argument.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We begin by proving the well-posedness of the KdV equation linearized around 0, that writes

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) = 0, & x \in (0,L), t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ y_x(L,t) = \alpha y_x(0,t) + \beta y_x(0,t-h), & t > 0, \\ y_x(0,t) = z_0(t), & t \in (-h,0), \\ y(x,0) = y_0(x), & x \in (0,L). \end{cases}$$
(4)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Taking into consideration of the delay

Following Nicaise and Pignotti 2006, we set

 $z(\rho, t) = y_x(0, t - \rho h)$

for any $\rho \in (0,1)$ and t > 0. Then z satisfies the transport equation

$$\begin{cases} hz_t(\rho, t) + z_\rho(\rho, t) = 0, & \rho \in (0, 1), t > 0, \\ z(0, t) = y_x(0, t), & t > 0, \\ z(\rho, 0) = z_0(-\rho h), & \rho \in (0, 1). \end{cases}$$

Consequently, (4) can be written as

$$\begin{array}{ll} \begin{array}{ll} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) = 0, & x \in (0,L), \, t > 0, \\ hz_t(\rho,t) + z_\rho(\rho,t) = 0, & \rho \in (0,1), \, t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ z(0,t) = y_x(0,t), & t > 0, \\ y_x(L,t) = \alpha y_x(0,t) + \beta z(1,t), & t > 0, \\ z(\rho,0) = z_0(-\rho h), & \rho \in (0,1), \\ y(x,0) = y_0(x), & x \in (0,L). \end{array}$$

First order system

We introduce the Hilbert space $H = L^2(0, L) \times L^2(0, 1)$ equipped with the inner product

$$\left\langle \left(\begin{array}{c} y\\z\end{array}\right), \left(\begin{array}{c} \tilde{y}\\\tilde{z}\end{array}\right) \right\rangle = \int_0^L y \tilde{y} \, dx + \left|\beta\right| h \int_0^1 z \tilde{z} \, d\rho.$$

We denote by $\|\cdot\|_H$ the associated norm and this new norm is equivalent to the usual norm on H. We then rewrite (4) as a first order system:

$$\left\{\begin{array}{ll} U_t(t) = \mathcal{A}U(t), & t > 0, \\ U(0) = U_0 \in H, & \end{array} \right. \quad \text{where } U = \left(\begin{array}{c} y \\ z \end{array}\right), U_0 = \left(\begin{array}{c} y_0 \\ z_0(-h \ \cdot) \end{array}\right),$$

and where the operator \mathcal{A} is defined by

$$\mathcal{A}=\left(egin{array}{cc} -\partial_{xxx}-\partial_x & 0\ 0 & -rac{1}{h}\,\partial_{
ho} \end{array}
ight),$$
 with domain

 $\mathcal{D}(\mathcal{A}) = \left\{ (y, z) \in H^3(0, L) \times H^1(0, 1) | y(0) = y(L) = 0, \\ z(0) = y_x(0), y_x(L) = \alpha y_x(0) + \beta z(1) \right\}.$

Well-posedness result

We define the space

 $\mathcal{B} := C([0,T], L^2(0,L)) \cap L^2(0,T,H^1(0,L))$

endowed with the norm

$$\|y\|_{\mathcal{B}} = \max_{t \in [0,T]} \|y(t)\|_{L^{2}(0,L)} + \left(\int_{0}^{T} \|y\|_{H^{1}(0,L)}^{2} dt\right)^{1/2}$$

To prove the well-posedness result of the non-linear KdV equation, we exactly follow Coron-Crépeau 2004 (see also Cerpa 2014).

Proposition

Assume $|\alpha| + |\beta| < 1$. There exist r > 0 and C > 0 such that for every $(y_0, z_0(-h \cdot)) \in H$ such that

 $||(y_0, z_0(-h\cdot))||_H \le r,$

there exists a unique solution of (3) which satisfies

 $||y||_{\mathcal{B}} \leq C ||(y_0, z_0(-h \cdot))||_H.$

Proposition

Let $|\alpha| + |\beta| < 1$. Then, for any regular solution of (3) the energy E is non-increasing and satisfies

$$E'(t) = (\alpha^2 - 1 + |\beta|) y_x^2(0, t) + (\beta^2 - |\beta|) y_x^2(0, t - h) + 2\alpha\beta y_x(0, t) y_x(0, t - h) \le 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Why E is non-increasing ?

Differentiating \boldsymbol{E} and using the system, we obtain

$$\frac{d}{dt} E(t) = -2 \int_0^L y(x,t)(y_{xxx} + y_x + yy_x)(x,t)dx$$

$$-2 |\beta| \int_0^1 y_x(0,t-h\rho)\partial_\rho y_x(0,t-h\rho)d\rho$$

$$= y_x^2(L,t) - y_x^2(0,t) - |\beta| y_x^2(0,t-h) + |\beta| y_x^2(0,t)$$

$$= \left(\alpha^{2} - 1 + |\beta|\right) y_{x}^{2}(0,t) + \left(\beta^{2} - |\beta|\right) y_{x}^{2}(0,t-h) \\ + 2\alpha\beta y_{x}(0,t)y_{x}(0,t-h)$$

$$= (MX(t), X(t)),$$

where

$$X(t) = \begin{bmatrix} y_x(0,t) \\ y_x(0,t-h) \end{bmatrix} \quad \text{and} \quad M = \begin{bmatrix} \alpha^2 - 1 + |\beta| & \alpha\beta \\ \alpha\beta & \beta^2 - |\beta| \end{bmatrix}.$$

Lyapunov functionnal

We choose now the following Lyapunov functionnal

$$V(t) = E(t) + \mu_1 V_1(t) + \mu_2 V_2(t),$$

where μ_1 and $\mu_2 \in (0,1)$ are positive constants that will be fixed small enough later on, V_1 is defined by

$$V_1(t) = \int_0^L xy^2(x,t)dx,$$

and V_2 is defined by

$$V_2(t) = h \int_0^1 (1-\rho) y_x^2(0,t-h\rho) d\rho.$$

It is clear that the two energies ${\cal E}$ and ${\cal V}$ are equivalent, in the sense that

$$E(t) \le V(t) \le \left(1 + \max\left\{L\mu_1, \frac{\mu_2}{|\beta|}\right\}\right) E(t).$$

First stability result [Baudouin, Crépeau, V. 2019]

Theorem

Assume $|\alpha| + |\beta| < 1$ and assume that the length L fulfills

$$L < \pi \sqrt{3}.$$

Then, there exist r > 0 sufficiently small, such that for every $(y_0, z_0) \in L^2(0, L) \times L^2(-h, 0)$ satisfying

$$||(y_0, z_0)||_{L^2(0,L) \times L^2(-h,0)} \le r,$$

the energy E of system (3) decays exponentially:

$$E(t) \le \kappa E(0)e^{-2\gamma t}, \qquad t > 0,$$

where for $\mu_1>0$ and $\mu_2\in(0,1)$ sufficiently small

$$\gamma \le \min\left\{\frac{(9\pi^2 - 3L^2 - 2L^{3/2}r\pi^2)\mu_1}{6L^2(1 + L\mu_1)}, \frac{\mu_2}{2(\mu_2 + |\beta|)h}\right\}.$$

000

・ロッ ・雪 ・ ・ ・

3

Idea of the proof

Let y be a regular solution of (3). For any $\gamma>0,$ we have

$$\begin{aligned} \frac{d}{dt} V(t) + 2\gamma V(t) &\leq \left(\widetilde{M}X(t), X(t) \right) - 3\mu_1 \int_0^L y_x^2(x, t) dx \\ &+ (2\gamma h(\mu_2 + |\beta|) - \mu_2) \int_0^1 y_x^2(0, t - h\rho) d\rho \\ &+ (2\gamma (1 + L\mu_1) + \mu_1) \int_0^L y^2(x, t) dx \\ &+ \frac{2}{3} \mu_1 \int_0^L y^3(x, t) dx, \end{aligned}$$

where

$$X(t) = \begin{bmatrix} y_x(0,t) \\ y_x(0,t-h) \end{bmatrix}$$

 and

$$\widetilde{M} = \begin{bmatrix} (1+L\mu_1)\alpha^2 - 1 + |\beta| + \mu_2 & \alpha\beta (1+L\mu_1) \\ \alpha\beta (1+L\mu_1) & (1+L\mu_1)\beta^2 - |\beta| \end{bmatrix}.$$

Idea of the proof

Thus we have,

$$\widetilde{M} = M + \mu_1 L \begin{pmatrix} \alpha^2 & \alpha\beta \\ \alpha\beta & \beta^2 \end{pmatrix} + \mu_2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

where M is defined as previously. As M is definite negative, we easily prove that for $\mu_1>0$ and $\mu_2>0$ sufficiently small the matrix \widetilde{M} is definite negative, by continuity of the applications Trace and Determinant.

Finally, for μ_1 and μ_2 sufficiently small, using Poincaré inequality, we obtain that

$$\begin{split} \frac{d}{dt} V(t) + 2\gamma V(t) &\leq \left(\frac{L^2 \left(2\gamma \left(1 + L\mu_1 \right) + \mu_1 \right)}{\pi^2} - 3\mu_1 \right) \int_0^L y_x^2(x, t) dx \\ &+ \left(2\gamma h(\mu_2 + |\beta|) - \mu_2 \right) \int_0^1 y_x^2(0, t - h\rho) d\rho \\ &+ \frac{2}{3} \mu_1 \int_0^L y^3(x, t) dx. \end{split}$$

Idea of the proof

Moreover, using Cauchy-Schwarz inequality and since $H^1(0,L)$ embeds in $L^{\infty}(0,L)$, we have:

$$\begin{split} \int_{0}^{L} y^{3}(x,t) dx &\leq \|y\|_{L^{\infty}(0,L)}^{2} \int_{0}^{L} y(x,t) dx \\ &\leq L\sqrt{L} \|y\|_{H^{1}(0,L)}^{2} \|y\|_{L^{2}(0,L)} \\ &\leq L^{3/2} \|(y_{0},z_{0}(-h\cdot))\|_{H} \|y\|_{H^{1}(0,L)}^{2} \\ &\leq L^{3/2} r \|y\|_{H^{1}(0,L)}^{2} \,. \end{split}$$

Consequently, we have

$$\begin{split} &\frac{d}{dt}V(t) + 2\gamma V(t) \\ &\leq \left(\frac{L^2\left(2\gamma\left(1+L\mu_1\right)+\mu_1\right)}{\pi^2} - 3\mu_1 + \frac{2L^{3/2}r\mu_1}{3}\right)\int_0^L y_x^2(x,t)dx \\ &+ \left(2\gamma h(\mu_2+|\beta|)-\mu_2\right)\int_0^1 y_x^2(0,t-h\rho)d\rho. \end{split}$$

End of the proof

It is then sufficient to choose r small enough such that $r<\frac{3(3\pi^2-L^2)}{2L^{3/2}\pi^2}$ (which is possible due to $L<\sqrt{3}\pi$) and $\gamma>0$ such that

$$\gamma \le \min\left\{\frac{(9\pi^2 - 3L^2 - 2L^{3/2}r\pi^2)\mu_1}{6L^2(1 + L\mu_1)}, \frac{\mu_2}{2(\mu_2 + |\beta|)h}\right\}.$$

to have

$$\frac{d}{dt}V(t) + 2\gamma V(t) \le 0,$$

which is equivalent to $V(t) \leq V(0)e^{-2\gamma t}$ for any t > 0. Using the equivalence between E and V, we obtain that

$$E(t) \le \left(1 + \max\left\{L\mu_1, \frac{\mu_2}{|\beta|}\right\}\right) E(0)e^{-2\gamma t}, \qquad t > 0.$$

By density of $\mathcal{D}(\mathcal{A})$ in H, the results extend to arbitrary $(y_0, z_0) \in L^2(0, L) \times L^2(-h, 0).$

Observability result of the linear equation

Theorem

Assume that $|\alpha| + |\beta| < 1$ is satisfied. Let $L \in (0, +\infty) \setminus \mathcal{N}$, where

$$\mathcal{N} = \left\{ 2\pi \sqrt{\frac{k^2 + kl + l^2}{3}}, \, k, l \in \mathbb{N}^* \right\}$$

and T > h. Then there exists C > 0 such that for all $(y_0, z_0(-h \cdot)) \in H$, we have

$$\int_0^L y_0^2(x) dx + |\beta| h \int_0^1 z_0^2(-h\rho) d\rho \le C \int_0^T \left(y_x^2(0,t) + z^2(1,t) \right) dt$$

where $(y, z) = S(.)(y_0, z_0(-h \cdot)).$

Ideas of the proof

- Contradiction argument (as in Rosier 1997);
- Generalized Aubin-Lions theorem (Simon 1987).

Stability result for the linear KdV equation

Theorem

Assume that

 $L \in (0, +\infty) \setminus \mathcal{N} \qquad \text{and} \qquad |\alpha| + |\beta| < 1.$

Then, for every $(y_0, z_0) \in L^2(0, L) \times L^2(-h, 0)$, the energy of the linear system (4) decays exponentially.

Ideas of the proof

Combinate

- the observability inequality,
- the decay of the energy,
- the fact that the system is invariant by translation in time.

Remark: The value of the decay rate can not be estimated in this approach.

Exponential decay of small amplitude solutions of the non-linear KdV equation [Baudouin, Crépeau, V. 2019]

Theorem

Assume that

 $L \in (0, +\infty) \setminus \mathcal{N}$ and $|\alpha| + |\beta| < 1.$

Then, there exists r > 0 such that for $(y_0, \mathbf{z_0}) \in L^2(0, L) \times L^2(-h, 0)$ st

$$\|(y_0, z_0)\|_{L^2(0,L) \times L^2(-h,0)} \le r,$$

the energy of the non-linear system (3) decays exponentially.

Idea of the proof: follows Cerpa 2014

- To decompose the solution as the solution of the linear system and the solution of the linear system with trivial initial data and right hand side;
- Use the exponential stability of the linear system.

Numerical simulations: $t \mapsto \ln(E(t))$ for different values of α , β and h (adaptation of [Colin, Gisclon, 2001])

1 Introduction

Stability with boundary delayed feedback

- Well-posedness and regularity results
- Lyapunov approach for a first stability result
- Second stabilization result Observability approach

Internal feedbacks with delay

4 Boundary controllability on a tree

First case: supp $b \subset \text{supp } a$

$$y_{t}(x,t) + y_{xxx}(x,t) + y_{x}(x,t) + a(x)y(x,t) + b(x)y(x,t-h) + y(x,t)y_{x}(x,t) = 0, \qquad x \in (0,L), \ t > 0, y(0,t) = y(L,t) = y_{x}(L,t) = 0, \qquad t > 0, y(x,0) = y_{0}(x), \qquad x \in (0,L), y(x,t) = z_{0}(x,t), \qquad x \in \omega, \ t \in (-h,0),$$
(5)

where a = a(x) and b = b(x) are nonnegative functions belonging to $L^{\infty}(0,L)$. We will also assume that $\operatorname{supp} b = \omega$, $b(x) \ge b_0 > 0$ a.e. in an open, nonempty subset ω of (0,L). We first assume that

$$\exists c_0 > 0, \qquad b(x) + c_0 \le a(x), \qquad \text{a.e. in } \omega.$$

We define the energy as

$$E(t) = \int_0^L y^2(x,t)dx + h \int_\omega \int_0^1 \xi(x)y^2(x,t-h\rho)d\rho dx,$$

where $\xi \in L^{\infty}(0,L)$ is chosen such that $\operatorname{supp} \xi = \operatorname{supp} b = \omega$ and

$$b(x) + c_0 \leq \xi(x) \leq 2a(x) - b(x) - c_0, \qquad x \in \omega.$$

First case: supp $b \subset$ supp a

$$\begin{split} \frac{l}{t} E(t) &= -y_x^2(0,t) - 2\int_0^L a(x)y^2(x,t)dx \\ &- 2\int_0^L b(x)y(x,t)y(x,t-h)dx + \int_\omega \xi(x)y^2(x,t)dx \\ &- \int_\omega \xi(x)y^2(x,t-h)dx \\ &\leq -y_x^2(0,t) + \int_\omega (-2a(x) + b(x) + \xi(x))y^2(x,t)dx \\ &- 2\int_{(0,L)\setminus\omega} a(x)y^2(x,t)dx + \int_\omega (b(x) - \xi(x))y^2(x,t-h)dx \end{split}$$

Results [V. 2020]:

- Local exponential stability result with a Lyapunov approach for $L<\pi\sqrt{3},$
- Local exponential stability result for any L > 0,
- Semi-global stability result for any L > 0.

In this case, the derivative of the energy ${\boldsymbol E}$ satisfies

$$\begin{split} \frac{d}{dt} \, E(t) &= -y_x^2(0,t) - 2 \int_{\text{supp } a} a(x) y^2(x,t) dx \\ &- 2 \int_{\omega} b(x) y(x,t) y(x,t-h) dx \\ &+ \int_{\omega} \xi(x) y^2(x,t) dx - \int_{\omega} \xi(x) y^2(x,t-h) dx \\ &\leq -y_x^2(0,t) - 2 \int_{\text{supp } a} a(x) y^2(x,t) dx + \int_{\omega} (b(x) + \xi(x)) y^2(x,t) dx \\ &+ \int_{\omega} (b(x) - \xi(x)) y^2(x,t-h) dx, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and so the energy is not decreasing in general due to the term $b(x) + \xi(x) > 0$ on ω .

Second case: supp $b \not\subset$ supp a

Following Nicaise Pignotti 2014, we consider the next auxiliary problem, which is "close" to (5) but whose the energy is decreasing:

$$\begin{cases} \widetilde{y}_t(x,t) + \widetilde{y}_{xxx}(x,t) + \widetilde{y}_x(x,t) + \widetilde{y}(x,t)\widetilde{y}_x(x,t) + a(x)\widetilde{y}(x,t) + b(x)\widetilde{y}(x,t-h) \\ + \xi b(x)\widetilde{y}(x,t) = 0, \\ \widetilde{y}(0,t) = \widetilde{y}(L,t) = \widetilde{y}_x(L,t) = 0, \\ \widetilde{y}(x,0) = y_0(x), \\ \widetilde{y}(x,t) = z_0(x,t), \end{cases}$$
(6)

where ξ is a positive constant. Then the derivative of the energy E defined by

$$E(t) = \int_0^L \widetilde{y}^2(x,t) dx + h\xi \int_\omega \int_0^1 b(x) \widetilde{y}^2(x,t-h\rho) d\rho dx,$$

with $\xi > 1$ satisfies

$$\begin{aligned} \frac{d}{dt} E(t) &= -\widetilde{y}_x^2(0,t) - 2 \int_{\text{supp } a} a(x) \widetilde{y}^2(x,t) dx - 2 \int_{\omega} b(x) \widetilde{y}(x,t) \widetilde{y}(x,t-h) dx \\ &- 2\xi \int_{\omega} b(x) \widetilde{y}^2(x,t) dx + \xi \int_{\omega} b(x) \widetilde{y}^2(x,t) dx - \xi \int_{\omega} b(x) \widetilde{y}^2(x,t-h) dx \\ &\leq -\widetilde{y}_x^2(0,t) - 2 \int_{\text{supp } a} a(x) \widetilde{y}^2(x,t) dx + \int_{\omega} (b(x) - \xi b(x)) \widetilde{y}^2(x,t) dx \\ &+ \int_{\omega} (b(x) - \xi b(x)) \widetilde{y}^2(x,t-h) dx \leq 0. \end{aligned}$$

Second case: supp $b \not\subset$ supp a

We would like to use the classical perturbation result of Pazy:

Theorem (Pazy)

Let X be a Banach space and let A be the infinitesimal generator of a C_0 semigroup T(t) on X satisfying $||T(t)|| \leq Me^{\omega t}$. If B is a bounded linear operator on X, then A + B is the infinitesimal generator of a C_0 semigroup S(t) on X satisfying $||S(t)|| \leq Me^{(\omega+M||B||)t}$.

Strategy:

- Sector Exponential stability for (6) linearized around 0 by the Lyapunov approach for all $L < \sqrt{3}\pi$;
- 2 Exponential stability for (5) linearized around 0 using the perturbation theorem of Pazy for all $L < \sqrt{3}\pi$ and for $||b||_{L^{\infty}(0,L)}$ small enough $(-\alpha + \sqrt{\beta}\xi ||b||_{L^{\infty}(0,L)} < 0)$;

Solution Local exponential stability for the nonlinear system (5) for all $L < \sqrt{3}\pi$ and for $\|b\|_{L^{\infty}(0,L)}$ small enough using the same proof as previously.

Theorem

Let $L < \sqrt{3}\pi$ and $\xi > 1$. Then there exist $\delta > 0$ (depending on ξ , L, h) and r > 0 sufficiently small such that if

 $\|b\|_{L^{\infty}(0,L)} \le \delta,$

for every $(y_0, z_0) \in \mathcal{H}$ satisfying

 $\|(y_0, z_0)\|_{\mathcal{H}} \le r,$

the energy decays exponentially.

Remarks:

• we can take a = 0,

• if h is large, the choice of b is such that $\|b\|_{L^{\infty}(0,L)}$ is small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Numerical simulations: $t\mapsto \ln(E(t))$ for different values of a and b

$$T = 10, L = 3, h = 2$$
 and $y_0(x) = 1 - \cos(2\pi x)$ and $z_0(x, \rho) = (1 - \cos(2\pi x))\cos(2\pi\rho h)$ with $\operatorname{supp} a = \operatorname{supp} b = (0, L/5)$

き のへの

- Time-varying delay;
- Improve some previous results, for instance remove $L < \sqrt{3}\pi$, with an appropriate Lyapunov functional;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Time-delay on the nonlinear term " $y(x,t-h)y_x(x,t)$ ";

1 Introduction

- Stability with boundary delayed feedback
 - Well-posedness and regularity results
 - Lyapunov approach for a first stability result
 - Second stabilization result Observability approach
- Internal feedbacks with delay

$$\begin{cases} y_t(x,t) + y_{xxx}(x,t) + y_x(x,t) + y(x,t)y_x(x,t) = 0, & x \in (0,L), t > 0, \\ y(0,t) = y(L,t) = 0, & t > 0, \\ y_x(L,t) = u(t), & t > 0, \\ y(x,0) = y_0(x), & x \in (0,L), \end{cases}$$

Theorem (Rosier 1997)

• KdV equation linearized around 0 is exactly controllable in $L^2(0, L)$ iff $L \notin \{2\pi \sqrt{\frac{k^2+l^2+kl}{3}}, k, l \in \mathbb{N}^*\}.$

• If
$$L \notin \{2\pi \sqrt{\frac{k^2+l^2+kl}{3}}, k, l \in \mathbb{N}^*\}$$
, then KdV equation is locally exactly controllable.

Theorem ([Coron, Crépeau 2004], [Cerpa 2007], [Cerpa, Crépeau 2009])

For all L > 0, KdV equation is locally exactly controllable at a time T large enough.

A tree-shaped network

We consider a tree-shaped network \mathcal{R} of (N + 1) edges e_i , of lengths $l_i > 0$, $i \in \{1, ..., N + 1\}$, connected at one vertex that we assume to be 0 for all the edges.

 e_1 is parametrized on the interval $I_1 := (-l_1, 0)$ and the N other edges e_i are parametrized on the interval $I_i := (0, l_i)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The nonlinear KdV equation on a tree

$$\begin{array}{l} \left(y_{i,t} + y_{i,x} + y_{i,xxx} + y_{i}y_{i,x}\right)(x,t) = 0, \ i \in \{1, \cdots, N+1\}, \ x \in I_i, \ t > 0, \\ y_1(-l_1,t) = 0, & t > 0, \\ y_i(l_i,t) = 0, & t > 0, \\ y_1(0,t) = \alpha_i y_i(0,t), & \forall i \in \{2, \cdots, N+1\}, \ t > 0, \\ y_1(0,t) = \alpha_i y_i(0,t), & \forall i \in \{2, \cdots, N+1\}, \ t > 0, \\ y_{1,x}(0,t) = \sum_{i=2}^{N+1} \beta_i y_{i,x}(0,t), & t > 0, \\ y_{1,xx}(0,t) = \sum_{i=2}^{N+1} \frac{1}{\alpha_i} y_{i,xx}(0,t), & t > 0, \\ y_i(x,0) = y_{i0}(x), & \forall i \in \{1, \cdots, N+1\}, \ x \in I_i, \end{array}$$

- $y_i(x,t)$: amplitude of the water wave on e_i at $x \in I_i$ at t,
- $h_i = h_i(t)$ is the control on the edge e_i belonging to $L^2(0,T)$,
- α_i and β_i are positive constants, $y_{i0} \in L^2(I_i)$,
- the transmission conditions at the central node 0 are inspired by [Mugnolo, Noja, Seifert 2018] and [Cavalcante 2018].

Goal: exact controllability

For any T > 0, $l_i > 0$, $y_0 \in L^2(\mathcal{R})$ and $y_T \in L^2(\mathcal{R})$, is it possible to find N Neumann boundary controls $h_i \in L^2(0,T)$ such that the solution y on the tree shaped network of N + 1 edges satisfies $y(\cdot, 0) = y_0$ and $y(\cdot, T) = y_T$?

Known results about the controllability of the KdV equation on a network

Known results: star-shaped network

- Ammari, Crépeau 2018: N + 1 controls for N edges,
- Cerpa, Crépeau, Moreno 2020: N controls for N edges.

Main differences

- the sense of the propagation of the water wave on the first edge,
- the transmission conditions at the central node,
- the fact that we improve the previous results having one control less.

Proposition

Let T > 0, $l_i > 0$ and assume

$$\sum_{i=2}^{N+1} \frac{1}{\alpha_i^2} \leq 1 \quad \text{ and } \quad \sum_{i=2}^{N+1} \beta_i^2 \leq 1.$$

Then, there exist r > 0 and C > 0 such that for every $y_0 \in L^2(\mathcal{R})$ and $h_i \in L^2(0,T)$ verifying

$$||y_0||_{L^2(\mathcal{R})} + \sum_{i=2}^{N+1} ||h_i||_{L^2(0,T)} \le r,$$

there exists a unique $y\in\mathcal{B}=C([0,T],L^2(\mathcal{R}))\cap L^2(0,T,H^1_0(\mathcal{R}))$ which satisfies

$$\|y\|_{\mathcal{B}} \leq C\left(\|y_0\|_{L^2(\mathcal{R})} + \sum_{i=2}^{N+1} \|h_i\|_{L^2(0,T)}\right).$$

Ideas of the proof

- Linear equation with no control, then with regular initial data and controls,
- Linear equation with less regularity on the data using density and multiplier arguments,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Linear equation with a source term,
- Nonlinear equation by fixed point argument.

Controllability result [Cerpa, Crépeau, V. 2020]

Theorem

Let
$$\alpha_i = \sqrt{N}$$
, $\beta_i = \frac{1}{\sqrt{N}}$ and $l_i > 0$ satisfying

$$L := \max_{i=1,\dots,N+1} l_i < \sqrt{3}\pi.$$
(7)

There exists $T_{\min} > 0$ such that the system is locally exactly controllable in any time $T > T_{\min}$: there exists r > 0 sufficiently small such that for any $y_0 \in L^2(\mathcal{R})$ and $y_T \in L^2(\mathcal{R})$ with

$$\|y_0\|_{L^2(\mathcal{R})} < r$$
 and $\|y_T\|_{L^2(\mathcal{R})} < r$,

there exist N Neumann boundary controls $h_i \in L^2(0,T)$ such that y satisfies $y(\cdot,0) = y_0$ and $y(\cdot,T) = y_T$ for $T > T_{\min}$.

Remark

This results can be extended to more general weights α_i and β_i .

Ideas of the proof

- Linearize the system around a stationnary solution (here 0),
- Show the exact controllability result of the linear KdV equation (by linearity, we can take $y_0 = 0$) with an observability inequality of the linear backward adjoint system obtained by the multiplier method,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• Apply a fixed point theorem to have the local exact controllability result of the nonlinear equation.

Comments

Remarks

- Drawback of this method: we do not obtain sharp conditions on the lengths l_i and on the time of control T_{\min} .
- Advantage: we get an explicit constant of observability.

Comment

A same type of result can be obtained for a general tree with N+1 external vertices, we get the controllability result with only N Neumann controls.

Open questions

- Observability inequality with a contradiction argument, case of critical lengths.
- Is it possible to reduce the number of controls at the external vertices and still having a control result ?
- Network with a circuit.

Thank you for your attention !

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>