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Motivation

In the usual logistic model, the intrinsic growth rate r and carrying
capacity K seem to be not related.

N ′ = rN

(
1− N

K

)
(1)
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One way to understand better if r and K should be related is separating
the per-capita population change as linear density dependence births and
deaths,

N ′

N
= (b0 − βN)− (d0 + δN)

Rearranging

N ′ = (b0 − d0)N

(
1− N

b0−d0
β+δ

)
(2)

Thus,
K =

r

β + δ
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Another approach is including mechanisms (motivated by Loreau’s book).
Start off with a resource limited system:

N ′ = βαRN

R′ = −αRN
(3)

Then (N + βR)′ = 0 and N + βR = N0 + βR0 which lead to one DE,

N ′ = α(N0 + βR0)N

(
1− N

N0 + βR0

)
(4)

Thus,
K =

r

α

We are interested in such relationships and in the ideas of resources
having their own dynamics in the PDEs setting to allow for habitat
heterogeneity in space and time.
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Motivation

The effect of heterogeneous habitat on a diffusing population is
crucial to understand population dynamics.

Loreau in his book [6] identified an increasing gap between
community ecology and ecosystem ecology.

One aspect of the problem is to understand how the spatial and
temporal arrangement of favorable and unfavorable resource affects
the population growth.

Next, we review some mathematical work that have been done in spatial
ecology.
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The effect of spatial heterogeneity in population dynamics,
Cantrell and Cosner (1991)

They were motivated by Skellman [7] to study the steady state of a
population that can diffuse through the habitat via random walks with
linear or logistic growth rate and spatially dependent coefficients.

ut = d∆u+m(x)u− c(x)u2 in Ω× (0,∞) (5)

subject to necessary boundary and initial conditions.

u(x, t) represents the population density, m(x) is the intrinsic growth
rate and c(x) is the carrying capacity

They examined a number of one dimensional cases where the local
growth rate m(x) is a piecewise constant function which has positive
effect on part of the habitat and negative effect everywhere else to
model the growth and spread of a population in steady state.
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Dispersal and spatial heterogeneity: single species,
DeAngelis et al. (2016)

DeAngelis et al. analyzed the properties of the positive steady state ud for

d∆u+ r(x)u

[
1− u

K(x)

]
= 0 u > 0 in Ω

∂u

∂n
= 0 on ∂Ω.

(6)

They focused on properties of ud in terms of the intrinsic growth rate r(x)
and the carrying capacity K(x). In particular, when the following
inequality holds: ∫

Ω
ud >

∫
Ω
K.

In other words, when is the total population strictly greater that the total
carrying capacity?
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Optimal Resource Allocation for a Parabolic Population
Model, Bintz and Lenhart (2020)

They considered an optimal resource allocation for a population with
diffusion and logistic growth and a resource function m(x, t) depending on
space and time rather than only space. Their goal is to find

m∗ ∈ V =

{
m ∈ L∞ : 0 ≤ m(x, t) ≤M,

∫ T

0

∫
Ω
m(x, t) dxdt = δ

}
such that

sup
m∈V

J(m) = J(m∗)

where

J(m) = A

∫
Ω
u(x, T ) dx+

∫ T

0

∫
Ω

[u− (Bm2)] dx
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subject to

ut − µ∆u = u(m− u), (x, t) ∈ Ω× (0, T )

∂u

∂n
= 0 (x, t) ∈ ∂Ω× (0, T ).

(7)

Part of their results showed that in the presence of inhospitable
boundary, the resources should be allocated further away from the
hostile boundary. However, with hospitable boundary, more resources
are allocated.
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Aims of our Resource Allocation Model

Motivated by Loreau considering that the resources are important to
understand population ecology and all the aforementioned reviewed
papers, our goals are to

Formulate a reaction-diffusion population model to study the effect of
resource allocation in an open ecosystem with resources having their
own dynamics in space and time.

Develop an optimal control problem of our resource allocation model
to maximize the abundance of a single species while minimizing the
cost of the inflow resource allocation.
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Formulation of Optimal Control Problems with PDE

We outline an approach of optimal control for parabolic PDE systems [5]:

1 Choose solution space. For most parabolic PDE problems with control is

w ∈ L2([0, T ];H1
0 (Ω)) ∩ L∞(Q) and wt ∈ L2([0, T ];H1

0 (Ω)∗)

2 Let U be the set of all admissible Lebesgue measurable controls with
corresponding lower and upper bounds and consider the following problem

Aw = f(w, u) in Q (8)

with corresponding initial and boundary conditions.

3 The goal is to find u∗ ∈ U such that

J(u∗) = sup
u
J(u)

where

J(u) =

∫
Q

g(x, t, w(x, t), u(x, t)) dxdt.

subject to problem (8).
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One needs to show that for any given u ∈ U , there exist an associated
state solution w ∈ L2([0, T ];H1

0 (Ω)) ∩ L∞(Q) that depends on u. In this
case, we write w(u) showing that w depends on u.

4 Require a priori estimates of states in the solution space to support
convergence of a maximizing sequence and finally prove the existence
of an optimal control u∗ ∈ U

5 Derive the necessary conditions for our optimal control problem with
PDE by finding corresponding adjoint and sensitivity PDEs

6 Use the adjoint and sensitivity PDEs to find an optimal control
characterization.

7 One must show later that the optimal control is unique when time is
sufficiently small.

We will illustrate steps 5 and 6 later on with our resource allocation model.
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Our Model

Consider the following resource allocation model with diffusing population
for an open ecosystem:

Nt − d∆N = α1NR− µN on Q

Rt = I(x, t)− α2NR+ pµN − qR on Q

N(x, 0) = N0(x) on Ω

R(x, 0) = R0(x) on Ω

N(x, t) = 0 on ∂Ω× [0, T ],

(9)

where Q = Ω× (0, T ) is the domain.

N = N(x, t) is measuring the population density.

R = R(x, t) represents the amount of resources.

d represents the diffusion rate, µ is the natural death rate of the
population and α1 is the conversion from resources into population
growth.
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Nt − d∆N = α1NR− µN on Q

Rt = I(x, t)− α2NR+ pµN − qR on Q

N(x, 0) = N0(x) on Ω

R(x, 0) = R0(x) on Ω

N(x, t) = 0 on ∂Ω× [0, T ],

(10)

I(x, t) is the input amount of resources (resources/time)

α2 is the rate of loss of resources due to the population, pµN is the
contribution to the resources from the death of the population and q
is the resource decay rate.

All the parameters are assumed to be non-negative and the function
I ∈ L∞(Q).

In the next two slides we analyze a simpler case of our model that’s
connected to previous works.
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A Generalized Carrying Capacity

Consider the special case when α1 = α2, p = 1 and q = 0, then our
system in (9) reduces to

Nt +Rt = I + d∆N (11)

and integrating over the time interval (0, t) leads to

R(x, t) = N0(x)−N(x, t)+R0(x)+

∫ t

0
I(x, s)ds+d

∫ t

0
∆N(x, s)ds. (12)

Substituting equation (12) for R into the PDE equation for N in (9) and
simplifying:

Nt − d∆N = α1N

(
N0(x)−N +R0(x) +

∫ t

0

I(x, s)ds+ d

∫ t

0

∆N(x, s)ds

)
− µN

= r(K)N

(
1− N

K(x, t)

)
.

(13)
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Thus, our PDE system can be rewritten as

Nt − d∆N = r(K)N

(
1− N

K(x, t)

)
. (14)

where

K(x, t) = N0(x)− µ

α1
+R0(x) +

∫ t

0
I(x, s)ds+ d

∫ t

0
∆N(x, s)ds

is the generalized carrying capacity and

r(K) = α1K(x, t)

would be the generalized intrinsic growth rate.

1 The special case of our model reduces to study a single parabolic
PDE for the population density. The equation (14) has been widely
studied when the carrying capacity depends only on space by Cosner
and Cantrell [2] and DeAngelis et al. [3, 4].
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Weak Formulation Problem

Definition:
Assume that d, µ, α1, α2, p and q are non-negative constants with
I ∈ L∞(Q). The functions

1 N ∈ L2((0, T ), H1
0 (Ω)) ∩ L∞(Q),

2 Nt ∈ L2((0, T ), H1
0 (Ω)∗)

3 R ∈ L2(Q)

are said to be weak solutions of problem (9) if for any test function
Φ ∈ L2((0, T ), H1

0 (Ω)) ∩ L∞(Q)∫ T

0

〈Nt,Φ〉dt+ d

∫ T

0

∫
Ω

∇N · ∇Φ dxdt =

∫ T

0

∫
Ω

α1N(x, t)R(x, t)Φ(x, t)

− µN(x, t)Φ(x, t) dxdt

R(x, t)−R(x, 0) =

∫ t

0

I(x, s)− α2N(x, s)R(x, s)

+ pµN(x, s)− qR(x, s)ds

(15)
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with initial and boundary conditions

N(x, 0) = N0(x) on Ω

R(x, 0) = R0(x) on Ω

N(x, t) = 0 on ∂Ω× (0, T )

(16)

where 〈·, ·〉 denotes the duality between H1
0 (Ω)∗ and H1

0 (Ω).
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A priori Estimates

Lemma 1: Let N0(x), R0(x) be positive and bounded on Ω. Then, any
weak solutions N , R of Problem (15) must be non-negative on Q.
Lemma 2: Let N be a weak solution of problem (15) with N0(x) ≥ 0,
then there exists a constant B > 0 depending only on given coefficients
and final time T such that

‖N‖L2(0,T ;H1
0 (Ω)) ≤ B ‖N0‖L2(Ω) .

Lemma 3: Let N be a weak solution of problem (15)-(16) with
N0(x) ≥ 0, then there exist a constant B1 > 0 depending on given data
such that

‖Nt‖L2(0,T ;H1
0 (Ω)∗) ≤ B1.
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Optimal Control Problem Formulation

U =
{
I ∈ L∞(Q)| 0 ≤ I(x, t) ≤M1, a.e.

}
is the set of admissible

controls. Then, we want to find I∗ ∈ U such that

sup
I∈U

J(I) = J(I∗) where J(I) =

∫ T

0

∫
Ω
C1N − (C3 + C2I)I dxdt

subject to

Nt − d∆N = α1NR− µN on Q

Rt = I(x, t)− α2NR+ pµN − qR on Q

N(x, 0) = N0(x) on Ω

R(x, 0) = R0(x) on Ω

N(x, t) = 0 on ∂Ω× [0, T ],

(17)

The objective functional J(I) maximizes the total abundance of the
population when the cost related to input amount of resources is
minimized.
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Sketch of Necessary Conditions

1 Define Iε = I + εk for ε > 0 and any variation function k ∈ U with
Iε ∈ U . We will differentiate the map I 7→ N and I 7→ R.

2 Let (N ε, Rε) = (N(Iε), R(Iε)) be the corresponding state solutions
for Iε and (N,R) = (N(I), R(I)) be the corresponding state
solutions for I.

3 Find the sensitivity of the N-state w.r.t. control

lim
ε→0+

N ε −N
ε

= lim
ε→0+

N(I + εk)−N(I)

ε
= Ψ1(x, t)

4 Find the sensitivity of the R-state w.r.t. control

lim
ε→0+

Rε −R
ε

= lim
ε→0+

R(I + εk)−R(I)

ε
= Ψ2(x, t)
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5 Form the PDE-difference quotient between N ε and N(
N ε −N

ε

)
t

− d∆

(
N ε −N

ε

)
= α1

N εRε −NR
ε

− µN
ε −N
ε

N ε −N
ε

= 0 on ∂Ω× (0, T )

N ε(x, 0)−N(x, 0)

ε
= 0.

6 Let ε→ 0 and completed corresponding convergence results. Thus,
the sensitivity PDE problem for Ψ1 is given by

(Ψ1)t − d∆Ψ1 = α1(Ψ1R+ Ψ2N)− µΨ1

Ψ1 = 0 on ∂Ω× (0, T )

Ψ1(x, 0) = 0.
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7 Form the ODE-difference quotient between Rε and R(
Rε −R

ε

)
t

= k − α2
N εRε −NR

ε
+ pµ

N ε −N
ε

− qR
ε −R
ε

Rε(x, 0)−R(x, 0)

ε
= 0.

8 Let ε→ 0 and completed corresponding convergence results. Thus,
the sensitivity ODE problem for Ψ2 is given by

(Ψ2)t = k − α2(Ψ1R+ Ψ2N) + pµΨ1 − qΨ2

Ψ2(x, 0) = 0.

9 Write the sensitivity PDE system for Ψ1 and Ψ2 as

LΨ =

(
L1Ψ1

L2Ψ2

)
+M

(
Ψ1

Ψ2

)
=

(
0
k

)
on Q

Ψ1(x, 0) = 0 on Ω

Ψ2(x, 0) = 0 on Ω

Ψ1(x, t) = 0 on ∂Ω× (0, T )

with

M =

(
µ− α1R −α1N
α2R− pµ q + α2N

)
Valega-Mackenzie, Lenhart Resource Allocation in an Open Ecosystem November 24, 2020 24 / 36



10 Find the adjoint operator L∗ by formally multiplying λ1 times L1Ψ1

and integrate over our domain Q. Do the same now with λ2 and
L2Ψ2. Thus, the adjoint PDE system in vector form is:

L∗λ =

(
L∗1λ1

L∗2λ2

)
+MT

(
λ1

λ2

)
=

(
C1

0

)
on Q

λ1(x, T ) = 0 on Ω

λ2(x, T ) = 0 on Ω

λ1(x, t) = 0 on ∂Ω× (0, T )

where

L∗1λ1 = −(λ1)t − d∆λ1

L∗2λ2 = −(λ2)t

Observe that

∂ integrand of J

∂N
= C1 and

∂ integrand of J

∂R
= 0.
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11 Form the difference quotient of our objective functional where I∗ is
an optimal control

J(Iε)− J(I∗)

ε
=

∫ T

0

∫
Ω

C1
N ε −N

ε
− C3

Iε − I∗

ε
− C2

(Iε)2 − (I∗)2

ε
dxdt.

12 Passing the limit as ε→ 0+,

0 ≥
∫ T

0

∫
Ω

C1Ψ1 − k(C3 + 2C2I
∗) dxdt

=

∫ T

0

∫
Ω

(
Ψ1 Ψ2

)( C1

0

)
− k(C3 + 2C2I

∗) dxdt

=

∫ T

0

∫
Ω

(
Ψ1 Ψ2

)
L∗
(
λ1

λ2

)
− k(C3 + 2C2I

∗) dxdt

=

∫ T

0

∫
Ω

(
λ1 λ2

)
L

(
Ψ1

Ψ2

)
− k(C3 + 2C2I

∗) dxdt

=

∫ T

0

∫
Ω

(
λ1 λ2

)( 0
k

)
− k(C3 + 2C2I

∗) dxdt

=

∫ T

0

∫
Ω

k(λ2 − C3 − 2C2I
∗) dxdt.

In order to differentiate J(I) with respect to I.
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13 Assuming C2 6= 0 and taking into account the bounds for I∗ ∈ U
with inequality in step (12) we obtain that the optimal control
characterization is

I∗(x, t) = min
{
M1,max

{
0,
λ2(x, t)− C3

2C2

}}
for any (x, t) ∈ Q and any positive constant C2 and C3.

Theorem 1: There exists an optimal control I∗ and corresponding states
(N∗, R∗) such that

J(I∗) = sup
I∈U

J(I).

Theorem 2: If C2 6= 0 and T is sufficiently small, then the optimal
control of problem (17) is unique.
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Numerical simulations

We want to investigate two numerical scenarios to illustrate our resource
allocation model in (9). For all these scenarios µ = 0, and q = 0 with
Q = [0, 1]× [0, 1]. These assumptions on the parameters mean that
natural death in the population and resource losses do not occur.

Nt − dNxx = α1NR on Q

Rt = I(x, t)− α2NR on Q

N(x, 0) = N0(x) on [0, 1]

R(x, 0) = R0(x) on [0, 1]

N(x, t) = 0 on {0, 1} × [0, 1],

(18)
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Numerical Cases Without Control

The two numerical scenarios about to be presented illustrate the
dynamics of our resource system for a fixed amount of input resource
that depends only on space.

We perform numerical simulations for a population diffusing at
different levels when

(1) there are no added resources I(x) = 0 and α1 = α2

(2) there are added resources I(x) 6= 0 and α1 6= α2
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Initial conditions without added resources, I(x) = 0

This initial conditions assume that the resources have no added resource.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Length

0

0.5

1

1.5

2

2.5

In
it
ia

l 
C

o
n
d
ti
o
n
s
 a

n
d
 I
(x

)

N
0

R
0

I

Figure: Set of initial conditions without added resources for Fig. 2 without added
resources
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Scenario 1 with IC in Fig. 1

Figure: Three levels of diffusion rate subject to initial conditions in Fig. 1 with
α1 = α2 = 0.4. The top, middle and bottom scenarios correspond to high,
medium and low diffusion rates for d = 1, d = 0.1 and d = 0.01 respectively.
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Initial conditions with added resources
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Figure: Set of initial conditions with only space dependent added resources for
Fig. 4
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Scenario 2 with IC in Fig. 3

Figure: Two levels of diffusion rate subject to initial conditions in Fig. 3 with
α1 = 1 and α2 = 0.6. The top and bottom scenarios correspond to medium and
low diffusion rates for d = 0.1 and d = 0.01 respectively.
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Conclusions

All a priori estimates as well as theorem 1 and 2 have been proven.

The previous scenarios were just done to start the process of
understanding our model.

We have performed some numerical simulations using optimal control
as well.

We will consider different sets of initial conditions with more
parameter choices. If we allow natural death in the population and
decay in the resources.

In the future, we would like to fit our model to some real world
examples.
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Thank You for Listening.
Any Questions?
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