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Control systems and controllability along a trajectory

Dynamical system: u′ = f(u, p
↑↑↑
)

control function

Multiplicative (or bilinear) control problem: u′ = Au+ pBu
u = g|∂Ω
u(0) = u0
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Different kinds of control systems

The map ΦΦΦ : ppp 7→ u is

Boundary control: Locally distributed control: MultiplicativeMultiplicativeMultiplicative control: u′ = Au+Bu
u = p|∂Ω
u(0) = 0

 u′ = Au+Bu+ p1ω

u = g|∂Ω
u(0) = 0

 u′ = Au+ pppBu
u = g|∂Ω
u(0) = u0yyy

linear

yyy
linear

yyy
nonlinear

Theorem (Ball, Marsden, Slemrod 1982)

Let X be a Banach space with dim(X)=+∞. Let A generate a C0-semigroup of bounded linear operators on X
and B : X → X be a bounded linear operator. Let u0 ∈ X be fixed, and let u(t; p, u0) denote the unique solution
of (??) for p ∈ L1

loc([0,+∞),R). The set of states accessible from u0 defined by

S(u0) = {u(t; p, u0); t ≥ 0, p ∈ Lr
loc([0,+∞),R), r > 1}

is contained in a countable union of compact subsets of X and, in particular, has a dense complement.
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Controllability to a trajectory

(X, ⟨·, ·⟩) separable Hilbert space.

AAA : D(AAA) ⊂ X → X densely defined linear operator:

(a) AAA is self-adjoint ,

(b) ∃σ > 0 : ⟨AAAx, x⟩ ≥ −σ∥x∥2, ∀x ∈ D(AAA),

(c) ∃λ > −σ such that (λI +AAA)−1 : X → X is compact,

()

BBB : D(BBB) ⊂ X → X bounded linear operator.

Bilinear control problem:  u′(t) +AAAu(t) + p(t)BBBu(t) = 0,

u(0) = u0.
(⋆)

Trajectories: eigensolutions ψjψjψj = e−λjλjλjtφjφjφj : solutions of (⋆) for p = 0 and u0 = φjφjφj , where AAAφjφjφj = λjλjλjφjφjφj , for all
j ∈ N∗.
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Controllability to a trajectory
Definition

Let T > 0 and let AAA satisfy (). The pair {AAA,BBB} is called jjj-null controllable in time TTT if there exists a constant
N(T ) > 0 such that for every y0 ∈ X one can find a control p ∈ L2(0, T ) satisfying ∥p∥L2(0,T )≤ N(T )∥y0∥, and
for which y(T ) = 0, where y(·) is the solution of{

y′(t) +AAAy(t) + p(t)BBBφjφjφj = 0, t ∈ [0, T ]
y(0) = y0.

N(T ) > 0 is called the control cost.

Theorem ( of Stabilization. Alabau-Boussouira, Cannarsa, U.)

Let {AAA,BBB} be a j-null controllable pair. Then, system (⋆) is superexponentially stabilizable to ψjψjψj , for any j ∈ N∗:

∥u(t)−ψjψjψj(t)∥≤Me−ρeωt
∀t ≥ 0,

Theorem ( of Controllability. Alabau-Boussouira, Cannarsa, U.)

Let {AAA,BBB} be a j-null controllable pair and N(T ) ≤ eC/T for T small. Then, for any T > 0, system (⋆) is exactly
controllable to ψjψjψj , for any j ∈ N∗:

u(T ) = ψjψjψj(T ).
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Sufficient conditions for j-null controllability

Theorem (Alabau-Boussouira, Cannarsa, U.)

Let AAA : D(AAA) ⊂ X → X satisfy () and such that ∃α > 0 for which its eigenvalues fulfill the gap condition√
λk+1λk+1λk+1 − λ1λ1λ1 −

√
λkλkλk − λ1λ1λ1 ≥ α, ∀ k ∈ N∗. ()

Let BBB : X → X be a bounded linear operator such that

i) ⟨BBBφjφjφj ,φkφkφk⟩ ̸= 0, ∀ k ∈ N∗,

ii) ∃ τ > 0 :
∑
k∈N∗

e−2λkλkλkτ

|⟨BBBφjφjφj ,φkφkφk⟩|2
< +∞.

Then, the pair {AAA,BBB} is j-null controllable.

Theorem (Alabau-Boussouira, Cannarsa, U.)

Let AAA : D(AAA) ⊂ X → X satisfy () and (). Let BBB : X → X be a bounded linear operator such that there exist
b, q > 0 for which

⟨BBBφjφjφj ,φjφjφj⟩ ̸= 0 and λkλkλk
q |⟨BBBφjφjφj ,φkφkφk⟩| ≥ b, ∀ k ̸= j.

Then, the pair {AAA,BBB} is j-null controllable in any time T > 0 with control cost N(T ) that satisfies N(T ) ≤ eC/T ,
for T small.
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Motivation
Theorem (Alabau-Boussouira, Cannarsa, U.)

Let AAA : D(AAA) ⊂ X → X satisfy () and such that ∃α > 0 for which its eigenvalues fulfill the gap condition√
λk+1λk+1λk+1 − λ1λ1λ1 −

√
λkλkλk − λ1λ1λ1 ≥ α, ∀ k ∈ N∗. ()

Let BBB : X → X be a bounded linear operator such that

i) ⟨BBBφjφjφj ,φkφkφk⟩ ̸= 0, ∀ k ∈ N∗,

ii) ∃ τ > 0 :
∑
k∈N∗

e−2λkλkλkτ

|⟨BBBφjφjφj ,φkφkφk⟩|2
< +∞.

Then, the pair {AAA,BBB} is j-null controllable.

Theorem (Alabau-Boussouira, Cannarsa, U.)

Let AAA : D(AAA) ⊂ X → X satisfy () and (). Let BBB : X → X be a bounded linear operator such that there exist
b, q > 0 for which

⟨BBBφjφjφj ,φjφjφj⟩ ̸= 0 and λkλkλk
q |⟨BBBφjφjφj ,φkφkφk⟩| ≥ b, ∀ k ̸= j.

Then, the pair {AAA,BBB} is j-null controllable in any time T > 0 with control cost N(T ) that satisfies N(T ) ≤ eC/T ,
for T small.
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Constructive algorithm for building mixing coupling potentials

Common hypothesis on the potential µ:

〈µφ1, φk〉 6= 0, ∀ k ≥ 1 (NVFC)(NVFC)(NVFC)

REMARKSREMARKSREMARKS:

• (NVFC)(NVFC)(NVFC) holds generically, but few examples of µ available,
• examples of µ that fullfil (NVFC)(NVFC)(NVFC) based on explicit knowledge of {λk}k≥1 and {φk}k≥1.

GOALGOALGOAL: define an algorithm for building µ that satisfies (NVFC)(NVFC)(NVFC)

=⇒=⇒=⇒ provide more examples of potentials µ with (NVFC)(NVFC)(NVFC) property,

=⇒=⇒=⇒ extend existing controllability results to other boundary conditions
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Constructive algorithm for building mixing coupling potentials

Consider the 1D Laplacian operator (with some boundary conditions) and let (φk, λk) be the
eigenfunctions and eigenvalues.

Theorem

For any function µ ∈ H4(0, 1) and for any k ⩾ 2 the following relation holds

(λk − λ1)
2

∫ 1

0

µ(x)φ1(x)φk(x)dx =

∫ 1

0

Tk(µ)(x)φ1(x)φk(x)dx+BG,k(µ).

where Tk : H4(0, 1) 7→ L2(0, 1) are the linear operators defined by

Tk(µ) = −
[
µ(4) + αkµ

′′
]
, ∀µ ∈ H4(0, 1) , ∀ k ∈ N∗,

where αk := 2(λ1 + λk), and BG,k : H4(0, 1) 7→ R are boundary linear operators.
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Constructive algorithm for building mixing coupling potentials

Theorem

For any function µ ∈ H4n(0, 1), for any n ∈ N∗ and any k ⩾ 2, we have the following inductive
formulas:

(λk −λ1)
2n

∫ 1

0

µ(x)φ1(x)φk(x)dx =

∫ 1

0

Tn
k (µ)(x)φ1(x)φk(x)dx+

n−1∑
p=0

(λk −λ1)
2p [BG,k(T

n−p−1
k (µ))

]
,

where Tn
k (µ) = (Tk ◦ · · · ◦ Tk)︸ ︷︷ ︸

n

(µ) and T 0
k (µ) = Id,

T p
k (µ) = (−1)p

p∑
l=0

Cl
pα

l
kµ

(4p−2l), ∀ p ∈ N∗,

where the notation Cl
p stands for the binomial coefficient Cl

p =
(
p
l

)
= p!

l!(p−l)! , for all 0 ≤ l ≤ p.
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Constructive algorithm for building mixing coupling potentials

Rr(α) :=
r∑

j=⌈ r
2 ⌉

(−1)jαjCr−j
j , ∀ α ∈ R.

Corollary

Let µ ∈ Pq(R)µ ∈ Pq(R)µ ∈ Pq(R) and n be such that 2n > q. Then, for any k ⩾ 2

(λk − λ1)
2n

∫ 1

0

µ(x)φ1(x)φk(x)dx =

n−1∑
r=0

BG,k(µ
(2r))

(λk − λ1)
2(n−1)

αr
k

Rr

((
αk

λk − λ1

)2
)

Moreover,
(

αk

λk − λ1

)2

> 4, ∀ k ⩾ 2.

Lemma

R2m(α) > 0, R2m+1(α) < 0, ∀α > 4, ∀m ≥ 0.
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A constructive algorithm: Dirichlet-Robin boundary conditions


−φ′′
k(x) = λkφk(x), x ∈ (0, 1),

φk(0) = 0, φk(1) + φ′
k(1) = 0.

Eigenvalues and eigenfunctions are given by

λk = r2k, φk(x) = ηk sin(rkx),

where rk are the positive solutions of

sin rk + rk cos rk = 0,

and ηk > 0 are normalization constants.

Proposition

For any µ ∈ H4n(0, 1), for any n ∈ N∗, and any k ⩾ 2, we have

(λk − λ1)
2n

∫ 1

0
µ(x)φ1(x)φk(x)dx = (−1)n

n∑
l=0

Cl
nα

l
k

∫ 1

0
µ(4n−2l)(x)φ1(x)φk(x)dx+ η1ηkr1rkDk,n(µ),

where Dk,n(·) is a boundary linear operator defined on H4n(0, 1).
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A constructive algorithm: Dirichlet-Robin boundary conditions
We introduce

ar := µ(2r+3)(1) + 2µ(2r+2)(1), r = 0, 1, . . . , l − 1

br := µ(2r+1)(1), r = 0, 1, . . . , l − 1 ( r = 0, 1, . . . , l if q is odd),

cr := 2µ(2r+1)(0), r = 0, 1, . . . , l − 1 ( r = 0, 1, . . . , l if q is odd).

(1)

REMARKREMARKREMARK: ∀ ((ar), (br)), ∃ !µ ∈ P∗
q (R) s.t. (1) holds:
µ(2r)(1) =

1

2
(ar−1 − br) , ∀ r ∈ {1, . . . , l − 1},

µ(2r+1)(1) = br, ∀ r ∈ {0, . . . , l − 1}.

Viceversa, ∀µ ∈ P∗
q (R), (µ(k)(1))1≤k≤q uniquely determine ((ar), (br)).

REMARKREMARKREMARK: the potential µ is completely determined by the knowledge of µ(k)(1) for all k ∈ {0, . . . , q}, thanks to
the (finite) Taylor expansion of µ at 1:

µ(x) = K +

q∑
k=1

µ(k)(1)

k!
(x− 1)k = K + µ̃(x).
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A constructive algorithm: Dirichlet-Robin boundary conditions

Corollary

For any µ ∈ Pq(R)µ ∈ Pq(R)µ ∈ Pq(R), choosing n such that 2n > q, it holds that for all i ≥ 1

Ai,n := −D2i,n =

n−1∑
r=0

[
1

√
λ1 + 1

gr(λ2i) + cr

]
(λ2i − λ1)2(n−1)

αr
2i

Rr (τ2i) ,

Bi,n := D2i+1,n =

n−1∑
r=0

[
1

√
λ1 + 1

gr(λ2i+1)− cr

]
(λ2i+1 − λ1)2(n−1)

αr
2i+1

Rr (τ2i+1) ,

where
gr(x) :=

1
√
x+ 1

(ar + (x+ λ1 + 2)br) , ∀x ∈ (λ1,+∞).

⟨µφ1, φk⟩ ̸= 0, ∀ k ≥ 2 ⇐⇒ Dk,n ̸= 0, ∀ k ≥ 2 ⇐⇒ Ai,n, Bi,n ̸= 0, ∀ i ≥ 1
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INPUTINPUTINPUT

br > 0

M1br < ar < M2br

br < 0

M2br < ar < M1br

br > 0

ar = 0

br < 0

ar = 0

br > Mr;‘
3

Mr;‘
4 < ar < Mr;‘

5

br < −Mr;‘
3

Mr;‘
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7
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...
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b‘−1

b‘

a‘

...

b0

a0

K1 = K1(–1; –2; –3);

J1 = J1(–1; –3);

Q1 = Q1(–1; –2);

—1 = —1(–1):

Algorithm Alabau-Boussouira, U.
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Algorithm Alabau-Boussouira, U.

• output of the algorithm: ((ar), (br)), 0 ≤ r ≤ l − 1 for q even (0 ≤ r ≤ l for q odd),

• determine µ(k)(1), k = 1, . . . , q and hence define µ̃ ∈ P∗
q (R) by the finite Taylor expansion

µ̃(x) :=

q∑
k=1

µ(k)(1)

k!
(x− 1)k

• compute the zero order term of the polynomial µ ∈ Pq(R) by choosing

µ(0)(1) 6= −
∫ 1

0

µ̃(x)φ2
1(x)dx.

Our final polynomial µ ∈ Pq(R) that satisfies (NVFC)(NVFC)(NVFC) is

µ(x) := µ(0)(1) + µ̃(x) =

q∑
k=0

µ(k)(1)

k!
(x− 1)k.
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Application: Schrödinger equation, mixed boundary conditions

Consider the Schrödinger equation
i∂tu(t, x) = −∂2

xu(t, x)− p(t)µ(x)u(t, x), (t, x) ∈ (0, T )× (0, 1)

u(t, 0) = 0, u(t, 1) + ∂xu(t, 1) = 0,

which describes the motion of a quantum particle in a box (perfectly reflecting wall at x = 0 and a
nonstandard wall at x = 1) subject to an electric field, whose magnitude in given by the control p(·).

Robin boundary condition: φ(1) + Lφ′(1) = 0, L measures the time delay in scattering (difference
between moment of incidence and reflection).

Fülöp, T., Cheon, T., Tsutsui, I.. Classical aspects of quantum walls in one dimension. Physical
Review A, 66(5), 052102. (2002)

Belchev, B., Walton, M. A.. On Robin boundary conditions and the Morse potential in quantum
mechanics. Journal of Physics A: Mathematical and Theoretical, 43(8), 085301. (2010)

Allwright, G., Jacobs, D. M.. Robin boundary conditions are generic in quantum mechanics. arXiv
preprint arXiv:1610.09581 (2016)
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Application: Schrödinger equation, mixed boundary conditions

Theorem

Let T > 0 and µ ∈ H2(0, 1;R) be such that ∃C > 0 such that |〈µφ1, φk〉| ≥ C
λk
, ∀ k ∈ N∗.

Then, there exists δ > 0 and a C1-map

Γ : RT → L2(0, T )

where
RT :=

{
uf ∈ S ∩H2

(0)(0, 1;C) : ||uf − ψ1(T )||H2 < δ
}
,

such that Γ(ψ1(T )) = 0 and for any ψf ∈ RT , the solution of the Schrödinger equation with
Dirichlet-Robin boundary conditions, initial condition φ1 and control p = Γ(ψf ) satisfies
u(T ) = ψf .
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Application: Schrödinger equation, mixed boundary conditions

Theorem

Let T > 0, µ ∈ Pq(R) from Algorithm AU.

Then, there exists δ > 0 and a C1-map

Γ : RT → L2(0, T )

where
RT :=

{
uf ∈ S ∩H2

(0)(0, 1;C) : ||uf − ψ1(T )||H2 < δ
}
,

such that Γ(ψ1(T )) = 0 and for any ψf ∈ RT , the solution of the Schrödinger equation with
Dirichlet-Robin boundary conditions, initial condition φ1 and control p = Γ(ψf ) satisfies
u(T ) = ψf .
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Examples of admissible potentials for D.R. boundary conditions

The following polynomials have been computed through A.U. algorithm:

• µ(x) = 1 + 16(x− 1) + 12(x− 1)2 − 4(x− 1)3 − 3
4 (x− 1)4 + 1

5 (x− 1)5

• µ(x) = 1 + 52(x− 1) + 41(x− 1)2 − 16(x− 1)3 − 13
4 (x− 1)4 + (x− 1)5 + 1

6 (x− 1)6

• µ(x) = 1
10+240(x−1)+74(x−1)2−36(x−1)3− 11

2 (x−1)4+ 6
5 (x−1)5+ 1

15 (x−1)6− 1
70 (x−1)7

THANK YOU! GRACIAS! MERCI! GRAZIE!
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