Does the boundary controlled heat equation
define an exactly controllable system?
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Motivation and background on
reachability and controllability
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Some notation

We consider control systems described by equations of the form
(SE) 2(t) = Az(t) + Bu(t), with

e X (the state space) and U (the input space) are complex Hilbert
spaces. We have X = C" and U = (" for finite-dimensional con-
trol systems.

o T = (Ty):>p is a strongly continuous semigroup on X generated by A.
We have T; = ¢!/ for finite-dimensional control systems. X is D(A)

endowed with the graph norm and X_; is the dual of D(A*) with re-
spect to the pivot space X.

e B e L(U;X 1) is the control operator.
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Admissible control operators

The solution of (SE) writes:
z(t) = Tyz(0) + Pyu,

where T is the semigroup generated by A and

t
D, € L(L2([0,00): U), X_1), ®u = / T,_, Bu(o)do.
0

Definition.B s called an admissble control operator for T if Ran ®; C X
for one (and hence all) t > 0.

Example. Take A = —Ag with Ay > 0. For a > 0, denote X, = D(Af)
and X_, 1s the dual of X, with respect to the pivot space X. Then every
operator B € L(U, X_1) is admissible.

2

IIIII

BBBBBBB

Control in Time of Crisis, 2020 S




Controllability types

(A, B) is said ezactly controllable in time 7 if Ran &, = X.

(A, B) is said null controllable in time 7 if Ran ®; D Ran T,. This is equiv-
alent to the existence, for eaxh 29 € X of u € L?[0,7];U) such that the

solution of
2(t) = Az(t) + Bu(t), 2(0) = zp,

satisfies z(7) = 0.

(A, B) is approximatively controllable in time 7 if Ran &, = X.

The three above concepts coincide with the usual controllability
concept in the case of finite dimensional LT1Is.
B i 4
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First remarks

e In the finite dimensional case, all LTIs are controllable! i
Indeed, denoting by A the restriction of A to Ran @ then (A, B), with
state space Ran @ is controllable.

e Still in the finite dimensional case, Ran @, coincides with the range
of the restriction of ®, to signals which can be extended to analytic
functions from C to U.

e If X is infinite dimensional, A = —Ag with A9 > 0. and B €
L(U, X 1) is compact the (A, B) is not exactly controllable.
2

e If X is infinite dimensional and A is the restriction of A to Ran ® . then
(A, B), with state space Ran @ is not, in general, exactly controllable.
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Exact controllability and nonlinearities

Consider a nonlinear contol system
¢ = Az + F(z) + Bu,

with (A, B) exactly controllable in some time 7 > 0 and F' : X — X
“superlinear”. Then local exact controllability if the nonlinear system is
often easy to prove:

e Given f € L*([0,7]; X) the system 7 = Az + f + Bu is exactly con-
trollable. Indeed we can find an u such that

O u = —/ T,_of(o)do € X.
0

z¢ being the controlled trajectory we next look for a fixed point of
f e F(zy).
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Null controllability and reachable space (1)

Proposition 3. (Fattorini, Seidman) If (A, B) is null controllable in any
tyime then Ran ®, does not depend on 7 > 0.

Proof. Let 0 <7 < t,n € Ran®, and let u = [20] be a control such that

~

w(T,-) = n. Let u be the control defined by

0 for o €[0,t— 7],
u(o) = 9 .
w(oc+71—1t) for o€lt—rT,t.

Then w(t,-) = n, thus Ran @, C Ran ¢,.

~

Let now n € Ran ®; and u(o) = u(oc +t — 1), w(o)=w(oc+t—rT,-).
Then n =w(t,-) = w(r, ) = T,w(0,-) + .. Since Ran®, D RanT,, we

have n € Ran ®.,, thus Ran ®; C Ran ..
22> )
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Null controllability and reachable space (1)

Proposition 4. (Kellay, Normand and M.T., 2019)

Let (A, B) be a well-posed control LTI system which is null controllable in
any positive time and let 7, o > 0 and let

Ura = {ue L*([0,7;U) | (t—t*u(t)) € L*([0,7];U)}.

Then for every a > 0, 7 > 0 we have ¢, (U, ) = Ran ®..

Proof. Let n € Ran ®,; = Ran @g and let u = [gﬂ be a control such that

W (%, ) = 1. Let v be the control defined by

u(a)—{o for 06[0, ),

ﬁ(a+%) for o € [%,T}.

b

Then u € Uy, and Pru =7, thus Ran &, C ¢ (U, ).
22>
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The 1D boundary controlled heat equation
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Problem Statement (1)

(O 2,
%—t(t,x) (?9;1;2 (¢, x) t >0, z€(0,m),
(BOH) < (t 0) = UO( ) w (t,ﬂ') — U/W(t) t € [07 OO),
- w(0,z) =0 z € (0,7),

Given 7 > 0, define the input to state map

o | =) (>0, w0, ur € L20.7)),
I @'g‘; T
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Problem Statement (1)

Basic question: what can we say about Ran @7

Easy answer: This is a normed space when endowed with the norm

[Y||Ran @, = inf {u € L?[0,7];U) | ®;u=1}.

First questions:
e Is this a Banach space?

e Can we find a simple characterization of Ran ®; and of || - ||[Ran®. ?
Applications:

e Nonlinear problems, with stronger nonlinearities ans less regularity
(Laurent et Rosier, 2018).

e Time optimal control problems (Wang and Zuazua 2012, Wang, Xu
and Zhang, 2015). 277
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Existing results

Given 7 > 0 it is known that:

/[N
e Ran ®, C Hol(D), where v

D={s=xz+iyeC | |yl <z and |y| <7 —x};

e Ran®, O {¢ € Hol(S) | ¥ (0) = ) (7) = 0 for k € N}, where
S={s=x+iyeC | |yl <n} (Fattorini and Russell, 1971);

¢ Ran®, D Hol(B), where B = {3 eC | ‘3 — %‘ < %e(ge)_l }
(Martin, Rosier and Rouchon, 2016);

e For every ¢ > 0 we have Ran®, D Hol(D.), where D. is an e-
neighbourhood of the square D (Dardé and Ervedoza, 2016).

e £?(D) C Ran®, C A%(D) (Hartmann, Kellay and M.T. 2017)
> )
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Hilbert spaces of analytic functions

Let €2 C C be an open set with Lipshitz boundary.

The Hardy-Smirnov space E?() is

E2(Q)_{feHoz |/aQ ||dC|<oo}

The Bergman space with weight w is

A%(Q,w) = Hol(Q) N L*(Q,w).
For w = 1 we simply write A%(Q).
227
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Main results (I): notation \

y
A=rm—A
D
@)
Re (s2)

Let 6 > 0. wy5(s) = “—— for s € A.
Let wy 5(3) = wys(m — ) for 5 € A. /
Let X5 = A%(A,wos) + A%(A,wrs).

( o+ or=¢ )

lells = inf { llpollazaos) + lonll apan. o | %0 € A%(Dywns) b

\ Pr € AQ(A,OJW,(;) y
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Malin results (I1): statements
Theorem 1. (Kellay, Normand and M.T., 2019)

For every 7 > 0 we have ®, € L(L*([0,7];U); X,). Moreover, there exists
6* > 0 such that for every 7 > 0 and every é € (0,0*) we have Ran &, = Xj
for every 7 > 0.

Proposition 1. (Kellay, Normand and M.T., 2019)
We have X; = X, for every t, 7 > 0.

Corollary 1. (Kellay, Normand and M.T., 2019)
We have Ran @, = X for every 7, 6 > 0.

Proposition 2. (Kellay, Normand and M.T., 2019)
For every § > 0 we have X5 = A%(A) + A%(A).

Corollary 2. (Orsoni, 2019, Kellay, Normand and M.T., 2019)
We have Ran @, = A%(A) + A?(A) for every 7, § > 0.
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Malin ingredient of the Proof of Theorem 1
Theorem 2. There exists 0* > 0 such that

O, (VtL[0,7]) = A%(A,wo,) + A%(A, wrr) = X, (1 € (0,6%)),

Remark 3. The proof is essentially contained in the previous work Hart-
man, Kellay, M.T. (2017), where the conclusion of Theorem 2 was seen as
intermediate step. The main conlusion there was the obtained by proving
the continuous embedding

E2(D) € AX(A,wp,) + A2(A, wy,) (T € (0,6%)).

Remark 4. The question of the equality of f/fé;l(ﬂl) + ﬁ(“)/l(ﬂg) with
@(Ql N§)y) (separation of singularities, Cousin problem) has been studied
for various spaces, but it is open in the Bergman case. Important advance-
ments recently obtained by Hartmann and Orsoni.

| 3 B ]
Ins

BBBBBBBB

Control in Time of Crisis, 2020 18



Proof of Theorem 1

We know from Theorem 2 that ®; (Z/{T,%) = X, for 7 € (0,6%)). On the other

hand, we know from Proposition 4 that ®,(v/t L?[0,7]) = Ran ®, for every
7 > 0. We thus have Ran ®, = X, for every 7 € (0,6*). Finally we can
apply Proposition 3 which says that Ran @ is independendent of 7 > 0. We

obtain in this way that indeed for every 7 > 0 and every § € (0,6*) we have
Ran (I)T — Xg.
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Proof of Proposition 1 (1)

s“(t—1) (7r—3)2(t—7')

Fort, 7> 0 weset O,4(s) :=e 4r +e 4=

Lemma 1. Assume ¢, 7, ¢ > 0 are such that e < 7, t = 7+ ¢ and

(T+s)(%—1)<g.

Then for every f € A%(A;woy) and every f € A2(A;wy,) we have

f - AQ(A;WO’T), f

c A2(Aw. ).
@’T,t @’T,t ( ’w’)

Moreover, for every g € A*(A;p ) and every g € A2(A; Wr r—e) We have

90, € A(Njwor), g € A(Biwry)
T,t
>2>)
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Proof of Proposition 1 (1)

Lemma 2. Assume ¢, 7, ¢ > 0 and ©,; are as in Lemma 1. Moreover,
assume that 7 > 0 is such that

X5 = X, (0<5<T)

(This holds, in particular, for 7 € (0,0*), where ¢* is the constant in
Theorem 1.). Then X; = X.

Proof. Obviously that X, C X;. To prove that Xt C XT, let p € A%(A;wo )
and ¢ € Az(A wrt) . By Lemma 1 we have @Tt + @Tt c X, =X It

follows that there exist f € A%(A;wy r—e) €t f c AQ(A' Wy r—e) such that

@ft + @ T = — f + f. Using again Lemma 1 it follows that

"2 + 95 — f@T,t + f@'r,t c A2(A; wO,T) + A2(55 wﬂ',’T) — XT7

which ends the proof. S []
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Proof of Proposition 1 (111)

Let Z={7>0 | X5=X, forall € (0,7%)}. From Theorem 1 we know
that Z O (0, 6*). Let

70 := min(7/4,0%), m := min (270, Rk ) ,  €0:=(m—1p)/2.

m — 27‘0
We clearly have that 7y € Z and (79 + ¢9) (— — 1) < 5. Since the function
t— (t+¢eo) (3 — 1) is clearly decreasing on (0,00), it follows that
T m
1)< .
(t+so)(2t <3 (7 > 70)

Consider now the sequence (t,)nen defined by tg = 79 and t,.1 = t,, + 0.
Applying recursively Lemma 2 and obtain that for every n € N and every
t € [tn, the1] we have Xy = X, thus Z = (0, 00).

>2>)
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Proof of Proposmon 2

Lemma 3. Let ¢(s) = egi + ¢ 5. Then for every ¢ € A*(A) and every
p € A*(A) we have £ € AQ(A,wODW/Q) ¢ ¢ AQ(A Wr.r/2)-

Moreover, for every f € AQ(A;wO,WM) and f c A? (A,wmﬂ/él) we have

fU € A2(Njworya),  fUE€ AN AWy o).

Proof of Proposition 2. Let ¢ € A?(A) and ¢ € Az(ﬁ) and let g = ¢ + ¢.
According to Lemma 3 there exist f € A%(A;wy ,,.,/4) and f c AQ(A W 7T/4)
such that & = f + f. Using again Lemma 3 it follows that

We have thus shown that
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Concluding remarks
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Exact controllability on the reachable space ?

The above property does not hold in the infinite dimensional case (take a
heat equation on a half-line controled from the boundary).

Does it hold for systems which are null controllable in any positive time?

It “almost” holds for the 1D boundary controlled heat equation (we do
not know that the heat semigroup is strongly continous on Ran ®.).

OOOOOO

Control in Time of Crisis, 2020 25




Reachability with smooth inputs

Proposition 3 . For 7 > 0 and n € N we set

2 2 e 2

E2(D) := {w c E°(D) | Tk € E“(D) fork=1,... ,'n,} (n>1).
"9 5 dn—lv

W 9(0,7) = {fu e Wh=(0,7) | v(0)=---= T (0) = O} (n>1).

Then for every v € E2(D) there exist ug, u, € WE’Q(O, 7) with ¢~ [30] — 1)
T
Remark. We conjecture that the following “analytic” version holds: for
every ¢ € Hol(D), where D C C is an open set containing D, there exist
Gevrey type controls ug, u,, with all derivatives vanishing at ¢ = 0, such

that ®. [“’0] —_—

Ur
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Connections with the control cost

Assuming that the system (T, ®) is null controllable in some time 7 > 0
(this means that Ran ®, D RanT;.), the cost of null controllability in time
7 is the number ¢, defined by ¢; = sup ) <; [T+ |[Ran o, -

For our boundary controlled heat equation we set

d, = sup | T2+

Proposition 4.

With the above notation we have
Cr

limsup — < 1.
T—0+ d'r
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Several space dimensions

(M) =Auta) 130, 2e9
(BCHn) { w(t, ) =uq, t €[0,00), x € 0N
. w(0,2) =0 z € (Q,

Given 7 > 0, define the input to state map
¢ u=w(r,-) (t >0, u e L*([0,7]; L*(09Q)).

Theorem (Strohmaier and Waters, 2020).

For every 7 > 0 we have Ran ®7 O Hol (5 (Q)), where

EQ)={x+iyeC" | z€Q, |yl <d(z,00)}.
b o i
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