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Formulation of the problem



The fluid-rigid body interaction problem

In practice, self-propelled motion can be produced by propellers (sub-
marines), deformations (fishes), cilia (micro-organisms), etc.

Definition

A rigid body S undergoes a self-propelled motion in a fluid F if
(i) the total external force acting on F is identically zero,

(i) the total net force and torque, external to {F,S}, acting on S
are identically zero.



Equations of motion of the liquid in an inertial reference
frame

ou+u-Vu=V-o(u,q)
in Q(t), t >0
V-u=0
u(y,t) = U(y, 1) + ua(y, 1), at 9Q(2), ¢ > 0
lim w(y,t) =0, for all t € (0,00)

ly|—o0

U(y,O) = UO(y)a y €N

o(u,q) := 2vD(u) — gl = Vv — (Vu) " —pl
V-o(u,q) =vAu — Vq
Uly,t) :=n(t) +6(t) x (y —yo(t))



Equations of motion of the solid in an inertial reference
frame

Uy, t) =n(t) +6(t) x (y = yc(t))

d
mn:—/ J(U,g)Nd’Y—{-/ (U+U*)(U*N>d7
dt a0(t) o9(t)

ds9) _ / (y —yc) x o(u,q)Ndy
dt 80(1)

+/ (y —yc) x (U + us) (us - N)dy
29(t)

n(0) =mno, 6(0) = bo



Equations of motion in a reference frame attached to &

ov+v-Vv = V-o(v,p)+V -Vv—wxv
in © x (0, 00)
Vo = 0
v =10, +V at 902 x (0, 00)
lim v(z,t) =0, t € (0,00)

|z|—o00

v(x,0) =wvo(x), v €Q

V(x,t) =€(t) +w(t) xx
V.- Vo=¢ - Vo4 (wxz)- Vo



Equations of motion in a reference frame attached to &

V(z,t) =€(t) +w(t) xx

mié—i—mw><§:—/Ea(v,p)n—i—/z(v*—i—V)(v*-n)

dw

Idt —|—w><(Iw):—/Z$><a(v,p)n—|—/2xx(v*—l—V)(v*-n)

£(0) = &0, w(0) =wo

I is independent of time, symmetric and positive definite



Equations of motion in a reference frame attached to &

V(z,t) =€(t) +w(t) x x

ov+v-Vv = V-o(v,p)+V -Vv—wxw
in 2 x (0,00)
Vv = 0
v =14+ V at 90 x (0, 00)
lim v(z,t) =0, t € (0,00)
|x|—o00
dg
m— +mwx&=— [ olv,p)ndy+ [ (vi+V)(vs-n) dy

Icf;:—l—wx(Iw):—/xxa(v,p)nd'y—l—/xx(v*—I—V)(v*-n) dry
) b

v(x,0) = vo(z), z € Q2 £(0) =&, w(0)=wo



Steady states

V-o,p) = (v=V)-Vo+wxuv }
in Q

Vv = 0
v =104+ V at 00
lim v(z) =0,
|x|—o00

mw><£:—/690(11,;0)-71d’y+/(99(v*-n)(v*+V) dry

w><(Iw):—/aQ:L‘xo(v,p)'nd'y—l—/(mxx(v*-n)(v*+V) dry



The fluid-rigid body interaction problem
In the absence of external actions, the forward force (thrust) that
makes S move is generated by S. The motion is due to the inter-
action of the body's external surface and the fluid (velocities v..).

Self-propulsion may be produced by

» means of drawing fluid inwards across
portions of the boundary and expelling it from others, so that
the net flux of momentum across the boundary is nonzero,

/ (ve-n) (ve +V) dy#0and v, =0 o0n IN\T;
o0

or

» moving tangentially portions of the boundary, as by belts.
In this case,

/ (vs - n) (v + V) dy =0 because v, - n = 0.
o0



The direct fluid-rigid body interaction problem

Notation:
Vi) =f+wxz

o(v,p) :== Vv — (Vo) —pl

Direct problem: Given the boundary values v, at the surface of S,
prescribed relative to S, find (V, v, p) satisfying

—V.ow,p)+(w—=V)-Vo+wxv=0 inQ
V-v=0 inQ
v=V +uv, on

lim v(z) =0
|z|—o00

m§><w+/aQ [—o(v,p)n+ (Vs n) (v + V)] dy=0

(Iw) xw—l—/BQx X [—o(v,p)n+ (vs-n) (v + V)] dy =0
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The optimal control fluid-rigid body interaction problem

Question:

Is it possible to control the state of {S, F} through a
a distribution of velocities v, at the boundary 02
in order to

minimize the work needed to overcome the drag exerted by F on S

j(v*,v,p) = / v - U(Uap)n dfy

onN
and move S with a target velocity V(z) = +w x x ?



The optimal control fluid-rigid body interaction problem

Given V, find (vs, v, p) that minimizes

T (v+,v,p) 12/

voowpndy= [ (0.4 V) ol dy
o0

o0

and satisfies the state equations

—divo(v,p)+v- Vo=V -Vo+wxv=0 inQ

divo=0 inQ
v=V +uv, on0f)
lim v(z) =0
|z| =00

mfXw—f—/(m[—a(v,p)n—i—(v*-n)(v*—}-V—i—wxaz)] dy=20

(Iw) ><w—|—/8933>< [—o(v,p)n+ (v n) (v +V +wxx)] dy=0



Generalized Oseen problem



Classical Oseen problem

—divo(u,p) =&-Vo+ f inQ
divo=0 inQ
v =10, on 0Jf)
lxlliinoov(x) =0
Important case to be considered: f =V - (v®wv)

If £ # 0 there is an infinite paraboloidal region within which v
decays like |2|~! and outside of which v decays even faster.




Classical Oseen problem

The non-uniform decay associated with the wake behind the body
is described by the function

@(x) = |zl 1+%(|£|Il‘\+€'$) = [z[ [L + ()]

1

lv(x)] < Cw(m)'

The wake region behind the body is

We = {z e R®: s(x) < 1}.



Important auxiliary problem: generalized Oseen system

—divo(v,p) =(E4+wxz)-Vo—wxv+f inQ
divo=0 inQ
v=wv, on Jf

lim v(x) =0
|z|—00

In the case £ # 0, it is also expected that v decays faster outside a
paraboloidal region behind the body, representative of the wake.

However, it is expected that the decay can be affected by the rota-
tion.



Generalized Oseen problem

The decay of v and its derivatives is now described by the function
€ - wl (§-w)
wa) = lol 145 (e + &)

> There is no wake formation if £ and w are orthogonal.

» If w#0and w- ¢ # 0 there is a formation of a wake W, ,,
along the direction of w, whose “width” will depend on the
angle between w and &.

1
w(x)

(@) <C



Well-posedness of the generalized Oseen problem

Theorem Assume that 9 is of class C?, f = V - F € L?*(Q),

[Flomo = sup [w(@)?|F(2)] < oo
Tre
and v, € W3/22(9Q). Then, there exists a unique solution (v, p)
to the generalized Oseen problem with
Vv e WH(Q), peWhH(Q),
[V1,m,0 = sug [ww(z)|v(x)|] < 0o

xre

and
[Vol[12.0Hv 1 woH P20 SCUV-Fl2oH Fl2ooHvdls/2:200)-

In the above estimate, if |¢], |w| € [0, B], one can choose
C independent of ¢ and w.




Consequence of the first self-propelling condition

Net force exerted by the fluid to the rigid body

N = [o(v,p) +vRV — (wx x) ®v+ Flndy.
o0

Important case: F'=v ® v.

If V=0 then v € L?().

Let (v,p) be a solution to the generalized Oseen problem of class
Vu,p e L2(Q), ve L%Q)

and @ = [, n-vdy.

Suppose [z + (1 + |z])F(x)] € L3().



L?-estimate of the solution to the generalized Oseen
problem (N = 0)

» Case w = 0.

vl < L1+ 1€]) (IVoll2,0 + @) + lIpll20 + [ Fll20]
+ ||z Fll2.0

with constants C, C’ > 0 independent of v, p, F, £ and ®.
» Case w € R?\ {0}.

HUHQ,Q < CK(v,q,F,f,w,q)) + C/|||$’F||279

with constants C, C’ > 0 independent of v, p, F, £, w, where

_ w-EY? |wx
K(U7Q7F7£7w7¢)) = <1+’w‘ 1/4+ | |j= + ‘ ‘W|2§>

@+ I+ WD (Vo

20 +[2]) +lpllze + [ Fll20].



Optimal boundary control for drag
reduction



State equations

V-ol,p) = (v=V)-Vo+wxuv }
in

Vv = 0
v=uv,+V at 90
lim v(z) =0,
|z|—o00

mwxfz—/890(v,p)~nd’y+/89(v*-n)(m—&—V) dry

w><(Iw):—/é)ﬂmxa(v,p)-nd*y—i—/anx(v*-n)(v*—i—V) dry

Target velocity V(z) = £ + w x x is given. The control is v,.

How to satisfy the self-propelling conditions?



Construction of correctors. Auxiliary adjoint linear systems
For i € {1,2,3}, let (v®,¢®) and (V®, Q) be the solutions of
the generalized Oseen problems
—divo(@®, ¢+ (E+wxa) Vo) —wx oD =0 inQ
divo® =0 inQ
v = e; on 0f)
lim v®(z) =0

|z| =00

—divo(VD, QW)+ (e +wxa) VO —wx VO =0 inQ
divV® =0 inQ
v = e; X x on J9
lim V@ (z)=0

|x|—o00



The finite dimensional correctors

Recall:
o(v,p) :== Vv — (Vo) —pl

We can define velocity fields
gD = oD, ¢Nn, GO :=a(V® QD)n, on dQ,
and the finite dimensional control spaces

¢ localized boundary controls
Cy :=span{xg,xG; i = 1,2,3}
e tangential boundary controls

Cr :=span{(¢® x n) xn, (G xn)xn;i=1,273}



A linear "inverse” problem

Given V(z) = { +w x z, find v, € Cy, or Cr and (u, q) satisfying

—divo(u,q) — (+wxz)-Vutwxu=f inQ
divu=0 inQ
u=19+ Zf’:l(aixg(i) + BixGW) on 9N or
u=19+3" ((g? xn) xn+ Bi(GD xn)xn) ondQ

lim wu(z) =0
|z|—o00

—/ o, q)n+ (E +w x 2) -] dy = €
o0

—/ z x [o(u,q)n+ ({ +w x x) - nu| dy = wy.
o0

where f, 19, £y and wy are also given.



Auxiliary linear systems for the inverse/control problem

and
—divo(uf,qfr) +wxup— (§+wxax) Vup=f
divur =0
up =19 on 00

lim, oo up(z) =0



Formulation as a linear algebraic system - The case of

localized controls
a 1)
A (5) - (c) |

dj:=&r-ej +/m<7(ufypf)n dy-e;j (j=1,2,3),

where

77] ZWf€]+/89$XU(Uf7pf)nd’y€] (]:17273)7
and A, € R°%C is defined by
Aij = /Q xg? - g¥ dy (i,5 <3),

Aig = [ oGO dy (i<3.5>9),

Ajj = j xGU™ . g0 dy (i >4, <3),
9]
j xGO=3) . GU=3) dy (3,5 > 4).
o0

A

Z%]



Formulation as a linear algebraic system - The case of
localized controls

Lemma The matrix A, is is symmetric nonnegative. Furthermore,
there exist positive constants ¢, K such that if [£| < ¢, |w| < ¢,
then A is invertible with

1A | e ey < K,

where K is independent of &, w with [¢], |w| < ¢1.

Proof: Continuity of A in (0,0) and invertibility of A q).
Uses the convergence of the generalized Oseen system to the
Stokes system when (£, w) — (0,0).



The case of tangential controls

Similar formulation and results hold with the matrix 4, € R6x6
defined by

A--=—/ [(g@xn) n] [ xm)xn] dy (5 <9),

) },[(Go 3 % n) x n} dy (i <3,j>4),

(=3) % ) xn]'[(g(j)xn)xn} dy (i>4,j<3),

“Jult
L

EO



The state equations

Given V' and vy, find (v,p) and vf € C; or vf € Cy such that

—V.o(v,p)+(v—-V) - Vo+wxv=0 inQ
V-v=0 inQ
v=V+uv,+0¢ ondQ

lim v(x) =0
|z|—o0

mfxw—i—/m [—o(v,p)n+
+ (e +28) - n) (ve + 2+ V)] dy =0
(Iw) x w+/mm X [—o(v,p)n+

—i—((v*—l—vf)-n) (v*+vf+V)] dy=0



Well-posedness of the state equations in the optimal
control problem

Let
V, = {v. € WH2(99) ; v, -n =0 on 90}
and
Vr = {v* e W322(9Q) ; v, =0 on OQ\I‘}.
Theorem

Let Q be of class C3. There exist constants ¢y, C1, Co > 0, which
depend on ©, such that if £,w € R? and v, € V; (resp. v. € Vr)
satisfy

€| < co, |lw| < co, v«][3/2,2,00 < co,

then the following assertions hold:



Well-posedness of the state equations

e A solution (v, p, vf) of the state equations can be found within
the class

wv € L®(Q), (v,p) € W?2HQ)xWh2(Q), e, (resp.of €Cy)
along with estimates
V1m0 + IVoll2g + [[0€]3/2.2.00 < C1(|(&,w)| + [[vell3/2.2.00)

IV @ Volaa+ [pllize < Co(I(,w)] + [[vxll3/2,2,00)-

w14 (e )]

Recall:




Well-posedness of the state equations

e The energy equation is valid

cvdy = v)|? dx
/m(a(v,p)n) dy =2 /Q D(v)[2d

1
+/(m+f%mv+m+ﬁﬁw.
2 Jo

e The solution of the state equations is unique (up to constants for
the pressure) within the above class of functions. The pressure is
singled out under the additional condition p € L%(Q).



The cost functional

v-o(v,p)n dy = / (vs +V)-o(v,p)n dy
[2)9]

J (Vs, v, D) :/

o0

The infimum will be taken over the set of all possible states (v, p)
satisfying the direct problem for v, either in

Y, = {v* € W3/2’2(8Q) ;vx-n=0on 89}
orin
Vr = {v* e W322(90) ; v, =0 on OQ\I‘},

where I' is a nonempty open subset of 0€).



The state system and the cost functional

Using the energy equation satisfied by the state equations, we can
rewrite the drag functional in the following way:

1
J (v v,p) = 2| D()I[3.0 + 2/ (s +05) 0|V + v, + 20 dy.
o0

where v¢ are correctors of the control v, which ensure that the

self-propelling conditions are satisfied

3
of = Z (aixg(i) + BixG(i)) € C (localized controls)
i=1



Existence of optimal controls

The rigid body velocity V(z) = £ + w x = (target velocity) is given
and our aim is to minimize the drag using boundary control:

1
min (2HD(1}) %Q + / (Vs +15) - 0|V + v, + €2 d*y) ,
o0

2

[vel[3/2,2,00 < K

Theorem

Assume that &,w € R3? satisfy |¢] < cg, |w| < ¢p and & € (0, cq].
Then each of the optimal control problems, with tangential controls
and localized controls, admits a solution.



e Characterization of the optimal controls: adjoint state, first order
optimality condition;

e In practice, to obtain solutions by an iterative method, the follow-
ing strategy of resolution can be used:

— Guess for controls, solve for states

— Solve for adjoint state

— Update controls

— Repeat forward and backwards until convergence.



The Lagrangian. Tangential case

We will introduce the Lagrangian associated with the problem,
deduce the adjoint system and obtain a characterization of the
optimal controls.

Let
Yi={veW**(Q)NLT,(Q); V-v=0inQ},

U :={ue L5(Q)nD"*(Q) N D**(Q) ;

V- -Vu—-wxucL*Q),V-u=0inQ,
oy, ky €ER® u=10, +ky xx on 0N},

Z = L*(99).



The Lagrangian. Tangential case

U US7U*7U C)

D(v)]? dz—2 [ D(v):D(u) de+ [ (v-Vu)-v dz
/ I /

—/Q(V-Vu—w Xu)-vdr+m(€xw) by + ((Jw) X w) - ky
—(v =V = —{,an
for (v,v¢,vs,u, ) €Y X Cr x Vi x U x Z.
The adjoint system is obtained from the equations
DyLr(0,76,5,,0,O)v=0 Yoe,

DyeLr (0,7, 5,,3, Ol =0 Wl € Cy



The adjoint problem

Given a state (v, D), find (u, q, {3, ky)

—V.-o(@—-0,§—p)—0-Va—(V2)"0+V -Vi—-wxa=0 inQ
V-u=0 inQ
uw=1V;+ks xx ondN

lim u(z) =0
|z|—o0

Wl 0T —10,p—q)n)ag =0, Yot eC,.



Optimality condition

A vy = (v,05)

T (vy) =2 L(A(vs),v4,u,C),  ((u, () €U X Z).

Take, in particular, the solution & € U to the adjoint system
together with ( € Z:

~

Dv*j(a*)v* = 2D(v,vf)£(A(i}\*)7 i}\*? av C)DU*A(@\*)U*
+ 2Dy, L(A(D,), Dy, T, Oy,

where we need to use
120 — Zll2,2,0 + [2h — Zl1m0 + |12 — 25”3/2,2,89 —0

for (2h, 25,) := Dy, A(Dy)vs + o(h)/h. Then

1 ~

5 Do T (0)(0.=5) = Do, LA, 2, O) (02—12) = 0, Yo € VE,



Optimality condition

Theorem
Let Q be of class C3. Suppose that £,w € R3 and v, € Vr (resp.
V;) satisfy

€| < ko, |w| < ko, 1v4l3/2,2,00 < Ko-
Let ¥, be a solution of the optimal control problem, (v,7¢,p) the

corresponding state and (u, q) the solution of the adjoint system.
Then we have

/ (c(@—=U,p—q)n) - (vs —0y) dy >0, Vo, € VIO,
o0

in the case of tangential controls.



Optimality condition

Case of localized controls:

PN . 1 . .
/ (c(v—a, —Q)n)‘(v*—v*)d’H/ (V=) 1| VA4S | dy
o0 4 Joq

1 N ~ ~
—1-2/ (O + ) - n(V + Ty +0€) - (04 — 0s) dy
o0

+/ (0s—52) ) (wx2)-Tdy =0, Vo, Vo
9]



Thank you!
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