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Control in times of crisis, 7 Oct 2021

Finnish Centre of Excellence in
Inverse Modelling and Imaging   
2018-20252018-2025



Outline

1. Calderón problem

2. Controlling solutions

3. Fractional equations



Calderón problem

Electrical Resistivity Imaging in geophysics (1920’s) [image: TerraDat]

A.P. Calderón (1980):

▶ mathematical formulation

▶ solution of the linearized problem

▶ exponential solutions



Calderón problem
Conductivity equation{

div(γ(x)∇u) = 0 in Ω,
u = f on ∂Ω

where Ω ⊂ Rn bounded Lipschitz domain, γ ∈ L∞(Ω) positive
scalar function (electrical conductivity).

Boundary measurements given by the
Dirichlet-to-Neumann map1

Λγ : f 7→ γ∇u · ν|∂Ω.

Inverse problem: given Λγ, determine γ.

1as a map Λγ : H1/2(∂Ω) → H−1/2(∂Ω)



Calderón problem

Model case of inverse boundary problems for elliptic equations
(Schrödinger, Maxwell, elasticity, Navier-Stokes).

Related to:

▶ optical / acoustic / hybrid imaging

▶ inverse scattering

▶ geometric problems (boundary rigidity)

▶ invisibility cloaking



Calderón problem

Uniqueness results:

n ≥ 3 γ ∈ C 2 Sylvester-Uhlmann 1987

γ ∈ W 1,∞ Haberman-Tataru, Caro-Rogers 2016

γ ∈ W 1,n Haberman 2016, n=3,4

n = 2 γ ∈ C 2 Nachman 1996

γ ∈ L∞ Astala-Päivärinta 2006

Connections to Carleman estimates and unique continuation
(u vanishes in a ball =⇒ u ≡ 0).



Calderón problem

Techniques: solutions u ≈ eρ·x , ρ ∈ Cn, ρ · ρ = 0, and

n ≥ 3 γ ∈ C 2 L2 Carleman estimates

γ ∈ W 1,∞ Bourgain spaces / averaging

γ ∈ W 1,n Lp Carleman estimates, n=3,4

n = 2 γ ∈ C 2 ∂-scattering theory

γ ∈ L∞ quasiconformal methods



Local data problem

Prescribe voltages on Γ, measure currents on Γ:

Measure Λγf |Γ for any f with supp(f ) ⊂ Γ.
Partial results if n ≥ 3 [Kenig-S 2013, Kenig et al 2007, Isakov 2007].



Open questions

1. (Local data, n ≥ 3) If Ω ⊂ Rn and Γ ⊂ ∂Ω, solve the
Calderón problem with measurements on Γ.

2. (Anisotropic problem, n ≥ 3) Determine a C∞ matrix A up
to gauge from measurements for div(A(x)∇u) = 0.

3. (Counterexamples, n ≥ 3) Can one find γ1, γ2 ∈ Cα with
0 < α < 1 so that

Λγ1 = Λγ2 but γ1 ̸= γ2?
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Runge approximation

Runge’s theorem (for ∂u = 0):

analytic functions in simply connected U ⊂ C
can be approximated by complex polynomials.

General Runge property (for Pu = 0):

any solution in U , where U ⊂ Ω ⊂ Rn, can
be approximated using solutions in Ω.

Valid e.g. for Pu := div(γ∇u) if γ ∈ W 1,∞(Ω) is positive.
Reduces by duality to unique continuation [Lax/Malgrange 1956].



Approximate controllability

Theorem
Let U ⊂ Ω ⊂ Rn be Lipschitz with Ω \ U
connected, and Γ ⊂ ∂Ω open. Given a
solution2 v ∈ H1(U) and ε > 0, there is
f ∈ C∞

c (Γ) so that

∥uε − v∥L2(U) ≤ ε

where Puε = 0 in Ω with uε|∂Ω = f .

One can think of f as a boundary control, which makes uε
approximate the profile v within U .

2Only solutions in U can be approximated!



Application: localized potentials

Theorem
If U0,U1 ⊂ Ω are open sets so that

U0 ∩ U1 = ∅, Ω \ (U0 ∪ U1) connected and meets Γ,

then ∃ uj ∈ H1(Ω), Puj = 0, with

uj |U0 ≈ 0, uj |U1 ≈ j ,

supp(uj |∂Ω) ⊂ Γ.

Proof. Apply Runge approximation to piecewise constant
solutions wj ∈ H1(U0 ∪ U1) with wj |U0 = 0, wj |U1 = j .



Runge approximation

Produce solutions with u|U0 ≈ 0 and
u|U1 ≫ 1 (region of interest), but with
very little control outside U0∪U1. Useful
in the Calderón problem for

▶ piecewise analytic conductivities [Kohn-Vogelius 1985]

▶ local data if γ is known near ∂Ω [Ammari-Uhlmann 2004]

▶ detecting shapes of obstacles (γ known near ∂Ω), e.g.
▶ singular solutions [Isakov 1988]

▶ probe method [Ikehata 1998]

▶ monotonicity tests [Harrach 2008, ..., Harrach-Pohjola-S 2019]



Runge approximation

Four recent applications in inverse problems:

1. Quantitative Runge approximation

2. Anisotropic Calderón problem / Poisson embedding

3. Monotonicity methods for non-positive equations

4. Inverse problems for fractional equations



1. Quantitative Runge approximation

Given a solution v ∈ H1(U), find a solution
uε ∈ H1(Ω) satisfying

∥uε|U − v∥L2(U) ≤ ε

such that ∥uε∥H1(Ω) is as small as possible
(cost of approximation)?

Theorem (Rüland-S 2018) The cost of approximation satisfies

∥uε∥H1(Ω) ≲


1 if v is a solution in Ω,
ε−µ if v is a solution near U ,

eCε−µ
if v is a general solution in U .

Proved using duality and quantitative unique continuation.
Optimality: [Koch-Rüland-S 2021].



2. Anisotropic Calderón problem

In [Lassas-Liimatainen-S 2019], new proof of [Lassas-Uhlmann 2002]:
if (M , g) is a compact Riemannian manifold with boundary,
recover a real-analytic metric g up to isometry from DN map
for ∆g via Poisson embedding:

points of M int ↭ Poisson kernels in C∞(∂M)

Proof is heavily based on Runge approximation:

▶ harmonic functions separate points

▶ can prescribe Taylor expansions of harmonic functions



3. Monotonicity methods for Helmholtz

Shape detection for positive (e.g. conductivity) equations,
based on monotonicity inequality σ0 ≤ σ1 =⇒ Λσ0 ≥ Λσ1

[Tamburrino-Rubinacci 2002, Harrach 2008, . . . ]. Non-positive case:

Theorem (Harrach-Pohjola-S 2019)
If Λq is ND map for Helmholtz equation (∆ + k2q)u = 0 in Ω,
then

q1 ≤ q2 =⇒ Λq1 ≤fin Λq2

meaning that Λq2 − Λq1 has finitely many negative eigenvalues.

▶ works for imaging problems with positive frequency

▶ uses Runge approximation with constraints on f



Complex geometrical optics

Runge type results use that γ is known near ∂Ω, or employ
real-analyticity. They do not recover

▶ conductivities in C∞(Ω), which may oscillate near ∂Ω

▶ inclusions inside inclusions (cf. [Greenleaf et al 2017]).

Complex geometrical optics solutions [Sylvester-Uhlmann 1987]

u = eρ·x(1 + r), ρ ∈ Cn, ρ · ρ = 0

where ∥r∥L2(Ω) → 0 as |ρ| → ∞.

These are small in {Re(ρ) · x < 0}, large in {Re(ρ) · x > 0},
and oscillate in the direction of Im(ρ). Unlike in Runge
approximation, solutions are controlled in all of Ω. They yield
the Fourier transform of the unknown coefficient.
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Fractional Laplacian

We will study an inverse problem for the fractional Laplacian

(−∆)s , 0 < s < 1,

defined via the Fourier transform by

(−∆)su = F−1{|ξ|2s û(ξ)}.

This operator is nonlocal: it does not preserve supports, and
computing (−∆)su(x) involves values of u far away from x .



Fractional Laplacian

Different models for diffusion:

∂tu −∆u = 0 normal diffusion/BM

∂tu + (−∆)su = 0 superdiffusion/Lévy flight

∂α
t u −∆u = 0 subdiffusion/CTRW

The fractional Laplacian is related to

▶ anomalous diffusion involving long range interactions
(turbulent media, population dynamics, elasticity)

▶ Lévy processes in probability theory and finance

Many results for time-fractional inverse problems [Jin-Rundell,

survey 2015].



Fractional Laplacian

Let Ω ⊂ Rn bounded, q ∈ L∞(Ω). Since (−∆)s is nonlocal,
the Dirichlet problem becomes{

((−∆)s + q)u = 0 in Ω,
u = f in Ωe

where Ωe = Rn \ Ω is the exterior domain.

Given f ∈ H s(Ωe), look for a solution u ∈ H s(Rn). DN map

Λq : H s(Ωe) → H−s(Ωe), Λqf = (−∆)su|Ωe .
1

Inverse problem: given Λq, determine q.

1the work required to maintain Dirichlet data f in Ωe



Main result

Theorem (Ghosh-S-Uhlmann 2020)
Let Ω ⊂ Rn be a bounded open set, let 0 < s < 1, and let
q1, q2 ∈ L∞(Ω). If Wj ⊂ Ωe are open sets, and if

Λq1f |W2 = Λq2f |W2 , f ∈ C∞
c (W1),

then q1 = q2 in Ω.

Main features:

▶ local data for arbitrary Wj ⊂ Ωe

▶ same method works for all n ≥ 1

▶ new mechanism for (nonlocal) inverse problems

▶ works with single measurement [Ghosh-Rüland-S-Uhlmann 2020]



Extensions

Low regularity: potentials in L
n
2s (Ω), or roughly in W−s, n

s (Ω),
are uniquely determined [Rüland-S 2017].

Anisotropic case: the DN map for ((−∇ · A(x)∇)s + q)u = 0
determines q uniquely, if A(x) is a known C∞ positive matrix
[Ghosh-Lin-Xiao 2017].

And many others...



Main tools 1: uniqueness

The fractional equation has strong uniqueness properties:

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if both u and (−∆)su
vanish in some open set, then u ≡ 0.

Essentially due to [M. Riesz 1938], also have strong unique
continuation results [Fall-Felli 2014, Rüland 2015].

Such a result could never hold for the Laplacian:
if u ∈ C∞

c (Rn), then both u and ∆u vanish in a large set.



Main tools 1: uniqueness

Theorem
If u ∈ H−r (Rn) for some r ∈ R, and if u|W = (−∆)su|W = 0
for some open set W ⊂ Rn, then u ≡ 0.

Proof (sketch). If u is nice enough, then

(−∆)su ∼ lim
y→0

y 1−2s∂yw( · , y)

where w(x , y) is the Caffarelli-Silvestre extension of u:{
divx ,y (y

1−2s∇x ,yw) = 0 in Rn × {y > 0},
w |y=0 = u.

Thus (−∆)su is obtained from a local equation, which is
degenerate elliptic with A2 weight y 1−2s . Carleman estimates
[Rüland 2015] and u|W = (−∆)su|W = 0 imply uniqueness.



Main tools 1: propagation of smallness

x
′

xn+1

W × {0} Ω× {0}

1. (w , ∂yw) small on W × {0} =⇒ w small in W × (0, 1)
(boundary Carleman / interpolation inequality)

2. w small in W × (0, 1) =⇒ w small in Ω× (h, 1)
(three balls inequality + chain of balls argument)

3. w small in Ω× (h, 1) =⇒ w small in Ω× {0}
(Sobolev + trace estimates, optimize h with ∼ | log(h)| balls)



Main tools 2: approximation

Solutions of ∆u = 0 (harmonic functions) in Ω ⊂ Rn are rigid:

▶ if n = 1, then u′′ = 0 =⇒ u(x) = ax + b

▶ u has no interior minima or maxima (maximum principle)

▶ if u|B = 0 in B ⊂ Ω, then u ≡ 0 (unique continuation)

Moreover, if uj → f in L2(Ω) where ∆uj = 0, then also ∆f = 0
(harmonic functions can only approximate harmonic functions).

In contrast, solutions of (−∆)su = 0 turn out to be flexible.



Main tools 2: approximation

Theorem (Ghosh-S-Uhlmann 2020)
Any f ∈ L2(Ω) can be approximated in L2(Ω) by solutions u|Ω,
where

((−∆)s + q)u = 0 in Ω, supp(u) ⊂ Ω ∪W .

If everything is C∞, can approximate in C∞(Ω).1

Earlier [Dipierro-Savin-Valdinoci 2017]: C k

approximation by solutions of (−∆)su = 0
in B1, but with no control over supp(u).

1with special behaviour near ∂Ω



Main tools 2: approximation

The approximation property is also valid e.g. for

▶ ∂tu + (−∆)su = 0

▶ ∂2
t u + (−∆)su = 0

▶ m(Dx)u + (−∆y )
su = 0 where m(Dx) is a Fourier

multiplier

[Dipierro-Savin-Valdinoci 2017, Rüland-S 2017]

Control theory results [Warma et al...].



Main tools 2: approximation

The approximation property follows by duality from the
uniqueness result.

This uses Fredholm properties of the solution operator for{
((−∆)s + q)u = F in Ω,

u = 0 in Ωe ,

mapping F ∈ Hα−2s(Ω) to u in the special space H s(α)(Ω),
adapted to the fractional Dirichlet problem, for α > 1/2
[s-transmission property, Hörmander 1965, Grubb 2015]. One has

Hα
comp(Ω) ⊂ H s(α)(Ω) ⊂ Hα

loc(Ω)

but solutions in H s(α)(Ω) may have singularities near ∂Ω.



Summary

1. The Runge property for second order PDE allows one to
approximate solutions in U ⊂ Ω using solutions in Ω.

2. Runge approximation for the Calderón problem works in
special cases. In general, need complex geometric optics.

3. The fractional operator (−∆)s , 0 < s < 1, is nonlocal.
The DN map takes exterior Dirichlet values u|Ωe to
exterior Neumann values (−∆)su|Ωe .

4. Fractional equations may have strong uniqueness and
approximation properties, replacing complex geometric
optics and leading to strong results in inverse problems.


