Controlling elliptic PDE, and applications to inverse problems

Mikko Salo University of Jyväskylä

Control in times of crisis, 7 Oct 2021

European Research Council

Outline

- 1. Calderón problem
- 2. Controlling solutions
- 3. Fractional equations

Calderón problem

Electrical Resistivity Imaging in geophysics (1920's) $_{[image: TerraDat]}$

A.P. Calderón (1980):

- mathematical formulation
- solution of the linearized problem
- exponential solutions

Calderón problem

Conductivity equation

$$\begin{cases} \operatorname{div}(\gamma(x)\nabla u) = 0 & \text{ in } \Omega, \\ u = f & \text{ on } \partial\Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^n$ bounded Lipschitz domain, $\gamma \in L^{\infty}(\Omega)$ positive scalar function (electrical conductivity).

Boundary measurements given by the *Dirichlet-to-Neumann map*¹

$$\Lambda_{\gamma}: f \mapsto \gamma \nabla u \cdot \nu|_{\partial \Omega}.$$

Inverse problem: given Λ_{γ} , determine γ .

 1 as a map $\Lambda_\gamma: H^{1/2}(\partial\Omega) o H^{-1/2}(\partial\Omega)$

Model case of inverse boundary problems for elliptic equations (Schrödinger, Maxwell, elasticity, Navier-Stokes).

Related to:

- optical / acoustic / hybrid imaging
- inverse scattering
- geometric problems (boundary rigidity)
- invisibility cloaking

Calderón problem

Uniqueness results:

<i>n</i> ≥ 3	$\gamma\in \mathit{C}^2$	Sylvester-Uhlmann 1987
	$\gamma \in \mathit{W}^{1,\infty}$	Haberman-Tataru, Caro-Rogers 2016
	$\gamma \in W^{1,n}$	Haberman 2016, n=3,4
<i>n</i> = 2	$\gamma \in \mathcal{C}^2$	Nachman 1996
	$\gamma \in \mathit{L}^\infty$	Astala-Päivärinta 2006

Connections to *Carleman estimates* and *unique continuation* $(u \text{ vanishes in a ball} \implies u \equiv 0).$

Calderón problem

Techniques: solutions $u \approx e^{\rho \cdot x}$, $\rho \in \mathbb{C}^n$, $\rho \cdot \rho = 0$, and

<i>n</i> ≥ 3	$\gamma \in \mathcal{C}^2$	L^2 Carleman estimates
	$\gamma\in W^{1,\infty}$	Bourgain spaces / averaging
	$\gamma \in W^{1,n}$	L^p Carleman estimates, n=3,4
<i>n</i> = 2	$\gamma \in \mathcal{C}^2$	$\overline{\partial}$ -scattering theory
	$\gamma \in \mathit{L}^\infty$	quasiconformal methods

Local data problem

Prescribe voltages on Γ , measure currents on Γ :

Measure $\Lambda_{\gamma} f|_{\Gamma}$ for any f with $\operatorname{supp}(f) \subset \Gamma$. Partial results if $n \geq 3$ [Kenig-S 2013, Kenig et al 2007, Isakov 2007].

Open questions

- 1. (Local data, $n \ge 3$) If $\Omega \subset \mathbb{R}^n$ and $\Gamma \subset \partial \Omega$, solve the Calderón problem with measurements on Γ .
- 2. (Anisotropic problem, $n \ge 3$) Determine a C^{∞} matrix A up to gauge from measurements for $\operatorname{div}(A(x)\nabla u) = 0$.
- 3. (Counterexamples, $n \ge 3$) Can one find $\gamma_1, \gamma_2 \in C^{\alpha}$ with $0 < \alpha < 1$ so that

$$\Lambda_{\gamma_1} = \Lambda_{\gamma_2}$$
 but $\gamma_1 \neq \gamma_2$?

Outline

1. Calderón problem

- 2. Controlling solutions
- 3. Fractional equations

Runge approximation

Runge's theorem (for $\overline{\partial} u = 0$):

analytic functions in simply connected $U \subset \mathbb{C}$ can be approximated by complex polynomials.

General Runge property (for Pu = 0):

any solution in U, where $U \subset \Omega \subset \mathbb{R}^n$, can be approximated using solutions in Ω .

Valid e.g. for $Pu := \operatorname{div}(\gamma \nabla u)$ if $\gamma \in W^{1,\infty}(\Omega)$ is positive. Reduces by duality to *unique continuation* [Lax/Malgrange 1956].

Approximate controllability

Theorem Let $U \subset \Omega \subset \mathbb{R}^n$ be Lipschitz with $\Omega \setminus \overline{U}$ connected, and $\Gamma \subset \partial \Omega$ open. Given a solution² $v \in H^1(U)$ and $\varepsilon > 0$, there is $f \in C_c^{\infty}(\Gamma)$ so that

$$\|u_{\varepsilon} - \mathbf{v}\|_{L^2(U)} \leq \varepsilon$$

where $Pu_{\varepsilon} = 0$ in Ω with $u_{\varepsilon}|_{\partial\Omega} = f$.

One can think of f as a *boundary control*, which makes u_{ε} approximate the profile v within U.

²Only solutions in U can be approximated!

Application: localized potentials

Theorem If $U_0, U_1 \subset \Omega$ are open sets so that $\overline{U}_0 \cap \overline{U}_1 = \emptyset$, $\Omega \setminus (\overline{U}_0 \cup \overline{U}_1)$ connected and meets Γ , then $\exists u_j \in H^1(\Omega)$, $Pu_j = 0$, with $u_j | u_0 \approx 0$, $u_j | u_1 \approx j$, $\sup p(u_j | \partial_\Omega) \subset \Gamma$.

Proof. Apply Runge approximation to piecewise constant solutions $w_j \in H^1(U_0 \cup U_1)$ with $w_j|_{U_0} = 0$, $w_j|_{U_1} = j$.

Runge approximation

Produce solutions with $u|_{U_0} \approx 0$ and $u|_{U_1} \gg 1$ (region of interest), but with *very little control outside* $U_0 \cup U_1$. Useful in the Calderón problem for

- piecewise analytic conductivities [Kohn-Vogelius 1985]
- Iocal data if γ is known near $\partial \Omega$ [Ammari-Uhlmann 2004]
- detecting shapes of obstacles (γ known near $\partial \Omega$), e.g.
 - singular solutions [Isakov 1988]
 - probe method [Ikehata 1998]
 - monotonicity tests [Harrach 2008, ..., Harrach-Pohjola-S 2019]

Four recent applications in inverse problems:

- $1. \ \ {\rm Quantitative} \ \ {\rm Runge} \ \ {\rm approximation}$
- 2. Anisotropic Calderón problem / Poisson embedding
- 3. Monotonicity methods for non-positive equations
- 4. Inverse problems for fractional equations

1. Quantitative Runge approximation

Given a solution $v \in H^1(U)$, find a solution $u_{\varepsilon} \in H^1(\Omega)$ satisfying

$$\|u_{\varepsilon}|_{U} - v\|_{L^{2}(U)} \leq \varepsilon$$

such that $||u_{\varepsilon}||_{H^{1}(\Omega)}$ is as small as possible (cost of approximation)?

Theorem (Rüland-S 2018) The cost of approximation satisfies

$$\|u_{\varepsilon}\|_{H^{1}(\Omega)} \lesssim \begin{cases} 1 & \text{if } v \text{ is a solution in } \Omega, \\ \varepsilon^{-\mu} & \text{if } v \text{ is a solution near } \overline{U}, \\ e^{C\varepsilon^{-\mu}} & \text{if } v \text{ is a general solution in } U. \end{cases}$$

Proved using duality and quantitative unique continuation. Optimality: [Koch-Rüland-S 2021].

2. Anisotropic Calderón problem

In [Lassas-Liimatainen-S 2019], new proof of [Lassas-Uhlmann 2002]: if (M, g) is a compact Riemannian manifold with boundary, recover a real-analytic metric g up to isometry from DN map for Δ_g via Poisson embedding:

points of $M^{\text{int}} \iff$ Poisson kernels in $C^{\infty}(\partial M)$

Proof is heavily based on Runge approximation:

- harmonic functions separate points
- can prescribe Taylor expansions of harmonic functions

3. Monotonicity methods for Helmholtz

Shape detection for positive (e.g. conductivity) equations, based on monotonicity inequality $\sigma_0 \leq \sigma_1 \implies \Lambda_{\sigma_0} \geq \Lambda_{\sigma_1}$ [Tamburrino-Rubinacci 2002, Harrach 2008, ...]. Non-positive case:

Theorem (Harrach-Pohjola-S 2019) If Λ_q is ND map for Helmholtz equation $(\Delta + k^2 q)u = 0$ in Ω , then

$$q_1 \leq q_2 \implies \Lambda_{q_1} \leq_{\mathrm{fin}} \Lambda_{q_2}$$

meaning that $\Lambda_{q_2} - \Lambda_{q_1}$ has finitely many negative eigenvalues.

- works for imaging problems with positive frequency
- uses Runge approximation with constraints on f

Complex geometrical optics

Runge type results use that γ *is known near* $\partial \Omega$, or employ *real-analyticity*. They do not recover

- conductivities in $C^{\infty}(\overline{\Omega})$, which may oscillate near $\partial\Omega$
- inclusions inside inclusions (cf. [Greenleaf et al 2017]).

Complex geometrical optics solutions [Sylvester-Uhlmann 1987]

$$u = e^{\rho \cdot x} (1 + r), \qquad \rho \in \mathbb{C}^n, \qquad \rho \cdot \rho = 0$$

where $\|r\|_{L^2(\Omega)} \to 0$ as $|\rho| \to \infty$.

These are small in $\{\operatorname{Re}(\rho) \cdot x < 0\}$, large in $\{\operatorname{Re}(\rho) \cdot x > 0\}$, and oscillate in the direction of $\operatorname{Im}(\rho)$. Unlike in Runge approximation, solutions are *controlled in all of* Ω . They yield the Fourier transform of the unknown coefficient.

Outline

- 1. Calderón problem
- 2. Runge approximation
- 3. Fractional equations

We will study an inverse problem for the fractional Laplacian

$$(-\Delta)^s$$
, $0 < s < 1$,

defined via the Fourier transform by

$$(-\Delta)^{s}u=\mathscr{F}^{-1}\{|\xi|^{2s}\hat{u}(\xi)\}.$$

This operator is *nonlocal*: it does not preserve supports, and computing $(-\Delta)^{s} u(x)$ involves values of u far away from x.

Fractional Laplacian

Different models for diffusion:

$\partial_t u - \Delta u = 0$	normal diffusion/BM
$\partial_t u + (-\Delta)^s u = 0$	superdiffusion/Lévy flight
$\partial_t^{\alpha} u - \Delta u = 0$	subdiffusion/CTRW

The fractional Laplacian is related to

- anomalous diffusion involving long range interactions (turbulent media, population dynamics, elasticity)
- Lévy processes in probability theory and finance

Many results for time-fractional inverse problems [Jin-Rundell, survey 2015].

Fractional Laplacian

Let $\Omega \subset \mathbb{R}^n$ bounded, $q \in L^{\infty}(\Omega)$. Since $(-\Delta)^s$ is nonlocal, the Dirichlet problem becomes

$$\begin{cases} ((-\Delta)^s + q)u = 0 & \text{in } \Omega, \\ u = f & \text{in } \Omega_e \end{cases}$$

where $\Omega_e = \mathbb{R}^n \setminus \overline{\Omega}$ is the *exterior domain*.

Given $f \in H^{s}(\Omega_{e})$, look for a solution $u \in H^{s}(\mathbb{R}^{n})$. DN map

$$\Lambda_q: H^s(\Omega_e) o H^{-s}(\Omega_e), \ \ \Lambda_q f = (-\Delta)^s u|_{\Omega_e}.^1$$

Inverse problem: given Λ_q , determine q.

¹the work required to maintain Dirichlet data f in Ω_e

Main result

Theorem (Ghosh-S-Uhlmann 2020) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, let 0 < s < 1, and let $q_1, q_2 \in L^{\infty}(\Omega)$. If $W_j \subset \Omega_e$ are open sets, and if $\Lambda_{q_1} f|_{W_2} = \Lambda_{q_2} f|_{W_2}, \quad f \in C_c^{\infty}(W_1),$

then $q_1 = q_2$ in Ω .

Main features:

- ► local data for *arbitrary* $W_j \subset \Omega_e$
- ▶ same method works for all $n \ge 1$
- new mechanism for (nonlocal) inverse problems
- ▶ works with single measurement [Ghosh-Rüland-S-Uhlmann 2020]

Extensions

Low regularity: potentials in $L^{\frac{n}{2s}}(\Omega)$, or roughly in $W^{-s,\frac{n}{s}}(\Omega)$, are uniquely determined [Rüland-S 2017].

Anisotropic case: the DN map for $((-\nabla \cdot A(x)\nabla)^s + q)u = 0$ determines q uniquely, if A(x) is a known C^{∞} positive matrix [Ghosh-Lin-Xiao 2017].

And many others...

Main tools 1: uniqueness

The fractional equation has strong uniqueness properties:

Theorem If $u \in H^{-r}(\mathbb{R}^n)$ for some $r \in \mathbb{R}$, and if both u and $(-\Delta)^s u$ vanish in some open set, then $u \equiv 0$.

Essentially due to [M. Riesz 1938], also have strong unique continuation results [Fall-Felli 2014, Rüland 2015].

Such a result could never hold for the Laplacian: if $u \in C_c^{\infty}(\mathbb{R}^n)$, then both u and Δu vanish in a large set.

Main tools 1: uniqueness

Theorem If $u \in H^{-r}(\mathbb{R}^n)$ for some $r \in \mathbb{R}$, and if $u|_W = (-\Delta)^s u|_W = 0$ for some open set $W \subset \mathbb{R}^n$, then $u \equiv 0$.

Proof (sketch). If u is nice enough, then

$$(-\Delta)^{s}u\sim \lim_{y\to 0}y^{1-2s}\partial_{y}w(\,\cdot\,,y)$$

where w(x, y) is the *Caffarelli-Silvestre extension* of u:

$$\begin{cases} \operatorname{div}_{x,y}(y^{1-2s}\nabla_{x,y}w) = 0 & \text{ in } \mathbb{R}^n \times \{y > 0\}, \\ w|_{y=0} = u. \end{cases}$$

Thus $(-\Delta)^{s}u$ is obtained from a *local equation*, which is degenerate elliptic with A_2 weight y^{1-2s} . Carleman estimates [Rüland 2015] and $u|_{W} = (-\Delta)^{s}u|_{W} = 0$ imply uniqueness.

Main tools 1: propagation of smallness

- 1. $(w, \partial_y w)$ small on $W \times \{0\} \implies w$ small in $W \times (0, 1)$ (boundary Carleman / interpolation inequality)
- 2. $w \text{ small in } W \times (0,1) \implies w \text{ small in } \Omega \times (h,1)$ (three balls inequality + chain of balls argument)
- 3. $w \text{ small in } \Omega \times (h, 1) \implies w \text{ small in } \Omega \times \{0\}$ (Sobolev + trace estimates, optimize $h \text{ with } \sim |\log(h)| \text{ balls}$)

Solutions of $\Delta u = 0$ (harmonic functions) in $\Omega \subset \mathbb{R}^n$ are *rigid*:

• if
$$n = 1$$
, then $u'' = 0 \implies u(x) = ax + b$

u has no interior minima or maxima (*maximum principle*)
if *u*|_B = 0 in B ⊂ Ω, then *u* ≡ 0 (*unique continuation*)

Moreover, if $u_j \to f$ in $L^2(\Omega)$ where $\Delta u_j = 0$, then also $\Delta f = 0$ (harmonic functions can only approximate harmonic functions).

In contrast, solutions of $(-\Delta)^s u = 0$ turn out to be *flexible*.

Theorem (Ghosh-S-Uhlmann 2020) Any $f \in L^2(\Omega)$ can be approximated in $L^2(\Omega)$ by solutions $u|_{\Omega}$, where

 $((-\Delta)^s + q)u = 0 \text{ in } \Omega, \qquad \operatorname{supp}(u) \subset \overline{\Omega} \cup \overline{W}.$

Ω

If everything is C^{∞} , can approximate in $C^{\infty}(\overline{\Omega})$.¹

Earlier [Dipierro-Savin-Valdinoci 2017]: C^k approximation by solutions of $(-\Delta)^s u = 0$ in B_1 , but with no control over $\operatorname{supp}(u)$.

¹with special behaviour near $\partial \Omega$

The approximation property is also valid e.g. for

$$\triangleright \ \partial_t u + (-\Delta)^s u = 0$$

$$\triangleright \ \partial_t^2 u + (-\Delta)^s u = 0$$

•
$$m(D_x)u + (-\Delta_y)^s u = 0$$
 where $m(D_x)$ is a Fourier multiplier

[Dipierro-Savin-Valdinoci 2017, Rüland-S 2017]

Control theory results [Warma et al...].

The approximation property follows by duality from the uniqueness result.

This uses Fredholm properties of the solution operator for

$$\begin{cases} ((-\Delta)^s + q)u = F & \text{ in } \Omega, \\ u = 0 & \text{ in } \Omega_e, \end{cases}$$

mapping $F \in H^{\alpha-2s}(\Omega)$ to u in the special space $H^{s(\alpha)}(\overline{\Omega})$, adapted to the fractional Dirichlet problem, for $\alpha > 1/2$ [s-transmission property, Hörmander 1965, Grubb 2015]. One has

$$H^lpha_{
m comp}(\Omega)\subset H^{\mathfrak{s}(lpha)}(\overline{\Omega})\subset H^lpha_{
m loc}(\Omega)$$

but solutions in $H^{s(\alpha)}(\overline{\Omega})$ may have singularities near $\partial\Omega$.

Summary

- 1. The *Runge property* for second order PDE allows one to approximate solutions in $U \subset \Omega$ using solutions in Ω .
- 2. Runge approximation for the Calderón problem works in special cases. In general, need complex geometric optics.
- 3. The fractional operator $(-\Delta)^s$, 0 < s < 1, is *nonlocal*. The DN map takes exterior Dirichlet values $u|_{\Omega_e}$ to exterior Neumann values $(-\Delta)^s u|_{\Omega_e}$.
- 4. Fractional equations may have *strong uniqueness and approximation properties*, replacing complex geometric optics and leading to strong results in inverse problems.