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Applications of smart-material systems.
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Applications of smart-material systems.




° Fully Dynamic Single-layer piezoelectric beam models
@ Charge or Current-controlled
@ Voltage-controlled

© Controllability results
@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations
@ How about Quasi-static or Electrostatic models?
@ Some Simulations

Q Results with Delay & Memory & Thermal effects & Fractional
Damping

@ Nonlinear models vs. Linear models

© Numerics - Lack of quality work in the literature
@ Toy Problem

@ Wolfram’s Demonstration Projects
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Vibrations on non-smart elastic beams

Longitudinal Vs. Transverse Waves

w(z,t) : Transverse displacement of the centerline of the beam
¥(x,t) : Rotation of the beam

v(z,t) : Longitudinal displacement of the centerline of the beam
Notation: dot = %, prime = %.




Rayleigh (Kirchhoff) beam model

pht — ahvm =0,

phi — B, + 2, =0, (2,8) € (0, 1) x RY
BC'’s : clamped, hinged, free, mized

IC's

@ L,h > 0: Length and thickness of the beam

@ p,a, K > 0: Material constants

h2
(I - ﬁpg)m + Kuw" =0



Euler-Bernoulli beam model

pht — ozhvm =0,

pht + alh Wezze =0, (z,t) € (0,L) x RT
B(C’s: clamped, hinged, free, mixed

IC’s

@ L,h > 0: Length and thickness of the beam

@ p,a, K > 0: Material constants



Mindlin-Timoshenko beam model

pht — a1hvg, =0,
3 . 3
% - %wmr + ash (wz +7/)) =0,
phto — a1hvg, — agh (wy +1), =0, (z,t) € (0,L) x Rt
BC'’s : clamped, hinged, free, mized
IC's

@ L,h > 0: Length and thickness of the beam

@ p,aq,as > 0: Material constants



Single piezoelectric beam model

Top electrode

pIay 911393]3

Bottom electrode

Figure: (a) A piezoelectric beam is an elastic beam with electrodes at their
top and bottom surfaces, and connected to an external electric circuit. As
voltage is applied to its electrodes, it actively (b) stretches or (c) shrinks in
the longitudinal directions, therefore, causes charges to separate and line up
in the vertical direction.



Actuation by what? voltage, charge, current, or mechanical?
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Why voltage actuation?

@ Traditionally piezoelectric beams are actuated by voltage:
NASA, Tiersten’68, Jaffe et.al’71, Hagood’90, Banks&Smith’91,
Rogacheva’94, many others...

@ Easy to implement, simpler circuit design...it is a great
advantage!

@ Choice of models? finite or infinite dimensional? circuit model?
Linear, nonlinear?

@ Electrical hysteresis? accuracy of the model for low and high
voltage profiles. Comstock’81, Newcomb’82, Hagood’90, Main &
Garcia’97, Fleming’03...

@ Nature of the control operator: bounded or unbounded in the
Hilbert space? [Ozer & Morris- SICON’14, ESAIM-COCV’19].



Going to basics...

@ Electrostatic, quasi-static, or fully dynamic electro-magnetic
assumptions? [Ozer & Morris’14- SICON, Ozer &
Khenner'19-SPIE, Ozer’17 and 18-IEEE-TAC, Ozer’19-EECT,
Ozer & Morris-ESAIM-COCV, Ozer’20-AMOP]

“Even though the |electro — static and |quasi — static approaches
are sufficient for i.e. piezoelectric acoustic devices,
electromagnetic waves generated by mechanical fields need to be
accounted for in the calculation of radiated electromagnetic power

from a vibrating piezoelectric device [Yang’06] ”
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Fig. 1. Schemalic diagram of experimental setup.

Figure: Electromagnetic Radiation from Soft PZT SP-5A-Under Impact



Piezoelectricity? Magnetic energy is minor!

Magnetic
energy

Mechanical
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Electrical
energy




Going to basics... Why not?
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1. Introduction

Flastic waves and electromagnetic waves can interact in an
elastic dielectric [1-4]. However, in the conventional theory of
piezoelectricity [5,6], while the mechanical fields are governed by
Newton's laws and are fully dynamic, the electric field is governed

high-frequency piezoelectric devices, the radiation damping due
to electromagnetic waves generated by acoustic vibration through
piezoelectric coupling becomes more pronounced [12]. At present:
thereis only limited understanding of this effect. This is because the
fully dynamic theory for describing coupled elastic aj ecn‘on&
netic waves in piezoelectric crystals is much more complicated than

by electrostatics based on the quasistatic ion in [4,7].
As a consequence, while the theory is capable of describing elas-
tic wave phenomena, it cannot describe electromagnetic waves.
The quasistatic approximation makes the conventional theory of
piezoelectricity relatively simple. It is sufficient for the analysis of
most conventional piezoelectric devices which are of millimeters in
size or larger, and operate in the frequency range of MHz or lower.
In these devices, e.g., conventional piezoelectric crystal plate res-

thi ional theory of piezoelectricity. The theoretical solu-
tions for radiation in [8-10] are for the relatively simple situation of
unbounded plates in which the fields vary along the plate thickness
only. Researchers also studied other fully dynamic [13,14] and qua-
sistatic [15,16] problems with couplings among electric, magnetic
and mechanical fields.

In this paper, instead of using directly the fully dynamic theory
of coupled acoustic and electromagnetic fields, we propose a dif-



Piezoelectric beam assumptions

@ Euler-Bernoulli small displacement assumptions.
o Edges are insulated (No fringing effects!).

@ Assume transverse polarization in z direction, transverse
isotropy.

@ Activated by only external electric forces, i.e. charge or
current. (Voltage is a different deal)!

@ Linear constitutive equations.

o No hysteresis (Electrical nonlinearity).



Full set of Maxwell’s equations

“Dots to denote differentiation with respect to time”

V-D = oy, (Electric Gauss’s law)
V.-B =0, (Gauss’s law of magnetism)
V x E=—B, (Faraday’s law)
1 . : .
—(Vx B)=1ip,+D. (Ampére-Maxwell law)
I
—D -n = o,
B(C's : o=V
1 .
—(B x n) =is.
1
D | Electric displacement E | Electric field
B | Magnetic field vector “w Permeability of beam
is Surface current density | ¢, | Body current density
os | Surface charge density op | Body charge density
¢ | Electric potential V | Voltage.




Electrostatic — Quasi-static — Dynamic *

V-D = oy, (Electric Gauss’s law)
V-B=0, (Gauss’s law of magnetism)
V x E=—-B, (Faraday’s law)
w(V x B) =iy + D. (Ampére-Maxwell law)

@ Electrostatic: B=D =i, =0, =0 = E=—-V¢.

e Quasi-static: B#0, o, =i, =0, D#0, = E=-V¢—A
where A is the magnetic potential, and ¢ is the electric potential.

° Full set of Maxwell’s equations.

YH.F. Tiersten, Linear Piezoelectric Plate Vibrations , Plenum Press,
New York, 1969.



Constitutive equations

Piezoelectric beam (alternative) constitutive equations:

T\ [a —4TB S
D) |~ 5 E
T = oS —vEs3
T3 = —mkEy

D1 = €1E1
D3 = ~vS11 +e3E3

Stress tensor Strain tensor

Electric field vector Electric displacement vector

2| »n

Elastic stiffness coefficient matrix Piezoelectric coefficient matrix

Q|3

Impermittivity coefficient matrix




Assumptions

o E1 7é 07 ie. F= (E1,07E3).
e D = (D1,0,D3) and D;(z,z,t) = D;(z,t) :

I
B=VxA, E=-A-Vg¢.

¢ : Electric potential
A : Electric vector potential



Quadratic-through thickness-Induced electric field effects

Let Q@ =[0,L] x [-h/2,h/2].
Assume quadratic-through-thickness along z—direction.

2’2
¢z, 2) = ¢°(x) + 29" (z) + 5¢2(l’)

( Al%c,z) ) ( A?(w)+zA%gm) + 24 A3(z) )
Aa(z,2) (@) + 2AYa) + £A43() )



Lagrangian - Lee-JAP’91 - Hamilton’s Principle

L:/T[K—(P—E)+B+W] dt
0

L 2 0 h2 0
W:/O Mﬂg AY ﬂAf —os ¢ +il AT | dx

with surface continuity condition for each actuation :
dig
— =0, ogs=0.
dx 3

Admissible displacements: {v,w, ¢*, ¢, ¢, A}, A3 A3, AL, A3, A3},



ol = ¢, 0:=A}, n:=A3+ 5043 ¢:=

e1h?
= 12633

<o <Fr <

Q>



Single beam: Bending is not coupled to stretching...

2 h2
(bl _> (b? 6 = A%? "7 = Ag + %A%, 5 = 16216337

PO — gy —y (0 +1), =0
—§(¢M+9)+n+¢——um— —3 8(z — D)o (t)

(Stretching) €33
0+ (25;5 - 5633 (7736 B 0) = ngg}L (H(x) _ H(l‘ _ L)) Zs(t)
n+¢_ax 633(7711_91):0

avy +v(d+1n) =0 (Lateral force)
Eess (0 + ¢, ) =0 (First charge moment)
1@ —mng) =0 (Current)



Notice that

o No way to include the current source is(t) in the
variational approach if there are no magnetic effects!

@ The system is NOT WELL-POSED. The uniqueness fails:

Theorem (Morris & Ozer- IEEE-CDC’15)

For any scalar C* function x = x(z, 2,t), the Lagrangian L is
invariant under the transformation

A A=A+ Vy
P 9=0¢—X



A gauge needed to eliminate e-magnetic coupling!

@ Remedy:— > Use a gauge:

—£0, +n =0, (Coulomb — type)
—£0, +n =29, (Lorenz — type)
together with B.C’s: #(0) = 60(L) = 0.

o Coulomb-type: E-M waves travel with infinite speed
e Lorenz-type: E-M waves travel with finite speed



Coulomb gauge - Simplified PDEs and BCs

Letting 61 = 6,0 = A%, 7 = A3 + 1243, € = 38

12e33?

p'b QUgy — (QZ) + 77) =0

Stretehi ~Ebua+E0s + 1)+ ¢~ %vz = — 15 8(z — L)os(t)
(Stretching) b+ G — (e — 0) = g1 (H(x)—H(x—L))is(t)
i+ ¢ = e — & (Naa — 0a) =

avgy +v (¢ +1n) =0 (Lateral force)

Eess (9 + (bw) =0 (First charge moment)
w(—mn:)=0 (Current)
( )=0(L) =



More reduction!,  Ozer & Morris - ESAIM-COCV’20

Define the operator Pe := —¢D2 + I)fl . It is well-known that P is
a compact operator on L?(0, L). Also, P is a non-negative operator.



More reduction!,  Ozer & Morris - ESAIM-COCV’20

Define the operator Pe := (

¢D241)" . Tt is well-known that P is
a compact operator on L?(0, L). Also, P is a non-negative operator.

P — vy, — L (nga:)a: -

VN = _632}1 6(I = L)Us(t)

é:* Ll + e 0+ (Iffm)x :.&Bﬁ (H(z) — H(z — L)) iy(t)
n- 5337721 + 563377 - g (UZ - Pf(vm)) =0,

, (z,t) € (0,L) x RY

(0,8) = avy (L, 1) + 2 Peva (L, t) + vi(L, 1)
{65 77-??} (O7t) = {0’77-%} (L’t) =0,
(’U, 0, 7,7, 0, 77)(1'7 0) = (U07 907 7707 Ulv 01, 771)'

:0’




Lorenz gauge, Ozer - AMOP’20

pU — QUgg — (¢w + 771:) =0
(5* ngsfxr + 5m¢ 56332 Vy = EEZ;Z}L 5(-7: — L)Us(t)
i— 20, + el = g (H() ~ H@ = D)is0)
(Lorenz) = 63577"” + 563377 - va =0,
(z,t) € (0,L) x RT,
v(0,1) = avg (L, t) +v¢(L,t) +yn(L,t) =0,
{‘ba:a 9; 779:} (03 t). = {¢Ia 9; 779:} (L, t) =0,
(U7 ¢7 07 777/[]7 ¢7 07 ,';])(x, 0) = (UO7¢O7007n0’1}17¢17017771)'

Charge-control operator is UNBOUNDED in the energy space!
Current-control operator is in fact BOUNDED



Voltage-controlled piezoelectric beam model, Morris & Ozer - SICON’14

p(x,t) : Total accumulated charge on the electrodes of the beam

pht — arhv,x + YBhpge = 0,

v(0,t) = p(0,t) =0, t>0,
avI(L,t) - ’Y,sz(L,t) = Oa t> 07
Vit
/Bpw(Lat)_’YB’Uw(Lat): _# i t>07
v(z,0) = vo(x), vi(x,0) =v1(x), € (0,L),
p(x,0) = po(x), pi(x,0) =p1(z), «€(0,L),
ph3 . ah? / /
hy — ——g, 5 Wxzzx = Y, J ]
phiv 1o W + o Wezer =0, +BC's+I1C"s

@ L,h > 0: Length and thickness of the beam
@ p, i, 3,7, a1 > 0: Material constants
e V(t) = Voltage



Outline

© Controllability results
@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations
@ How about Quasi-static or Electrostatic models?
@ Some Simulations



Some results - Coulomb gauge!, Ozer-AMOP’20

1t ; . \
BO) = 5 [ {nl0—nl® +exldl? + caa il + ploP
0

2
+o¢|’ug,,|2 + —(vax) x} dx.

H := [L*(0, L)) x Hy(0,L) x (L*(0, L))*] () {y : £(y2)= — ys = 0} .
L
(y,z)y = / {ny121 + E€e33yaZa + €33y3Z3+
0
,YQ
ayaZs + %(Psy4)24 + pysZs} dz.

Lemma

This form defines an inner product on the linear space H. Moreover,
E is the norm induced by this inner product and H is complete.



Current control - Coulomb gauge!, Ozer-AMOP’20

Let
Y = [Y1, Y2, Y3, Yar ys) - = 10 — 1, 0,70, vz, 0]

y=Ay —Bil(t), y(z,0)=yo=(0"—n2,0"n" v, 0"

Where A=
I -D, 0 0
g” 0 0 0 =D.P, DI
“ipo 0 0 (D, — D, P
€33 533( T 5) and
0 0 0 x
2
¥
0 0 1D, %D, + L PD, 0
Dom(A) = [Hj(0,L) x (H*(0,L) N Hg(0,L)) x (H'(0,L))*> x H7 (0, L)]

72
<0J + Ps) Ya + Y3
€33

fren )

and the B and B* operators with the new state are

1 [ 1 [F .
(Bu(t), )y = 5633h/o u(t) o dax = u(t) feggh/o o dx = (u, B*1)y

and BB* ¢ £L(H. H).




Current control - Coulomb gauge!, Ozer-AMOP’20

Lemma

Let Dom(D2) = {w € H*(0,L) : w,(0) = w,(L) = 0}. The operator
%(PE — I) is continuous, self-adjoint and non-positive on IL2.
Moreover, for all w € Dom(F), J = D? P = D(I — £D2) .

Lemma

The operator A maps Dom(A) C H to H, and is densely defined in H.

Theorem

The operator A : Dom(A) C H — H satisfies A* = —A on H, and A is
the generator of a unitary semigroup {eAt}tZO on H. Letting T > 0
and is(t) € L?(0,T), for any yo € H, y € C[[0,T]; H], and there exists
a positive constants ¢(T) such that

Iy < o) {lvolld + lisl3aom |-



Current control - Coulomb gauge!, Ozer-AMOP’20

Along the trajectories, the energy satisfies dgt) = i4(t) (fOL o (x)dx

We investigate the asymptotic stability for the same B*- feedback
This leads to the feedback control il(t) = —K;h?¢2e3, fo z)dz
where K; > 0 is arbitrary.

{ y = Ay = Ay — K1h*¢?e535° BB*y,
y(a:, O) =Yo

Lemma

The infinitesimal generator A satisfies A* = —A(—K1) on H.
Moreover it is dissipative and it satisfies Re </~1y, y>ﬁ <0.

Theorem

A: Dom(fl) — H is the infinitesimal generator of a Co—semigroup of
contractions. Therefore for every T > 0, and yo € Dom(A) we have

yeC ([O7 T); Dom(A )) NC* ([0, T); H) . Moreover, the spectrum o(A)

offl has all isolated eigenvalues.



Lack of stabilizability - Coulomb gauge!

For real 7, define

A=apless, B=—(aess+7%)(n— €336T%) + alppesst?
C = —prless (1 — 33677 ,

ay =

\/B+\/BQ—4AC \/B—\/BQ—ZIAC’
, Q2 = .
24 24

Theorem (Ozer-AMOP’20, Ozer&Morris-ESAIM-COCV’20)

2
Let a; = Q”T”,aQ = MTW’ aknd m?4+n? > 1652)# for m,n € N. For
Yo € H, the semigroup {eAt}tZO is not asymptotically stable in H, i.e.
leAtyollg = 0, t — co. Furthermore, then the system {A, B} is not

asymptotically stabilizable by any bounded state feedback.

Proof: Use Benchimol’s Theorem.



How about charge actuation o (t)instead?

In the case of charge-actuation: the control operator B is an
unbounded operator with its adjoint B*¢) = 7 (¢1(0) — 91 (L)) -

B* measurement is mechanical: The difference between tip velocities.

Eigenfunctions y # 0 with (y1(L))?> =0

and so B*y = 0 can be constructed by following the same argument
as above for current control. It follows that the system is not
stabilizable.



Some results for current control - Lorenz gauge!

1t ; : .
Bt) =5 [ {n16 = nl+ cexmld+ auf? + canli + 0 + alusf? + plo} d
0
Define the states
Yy = [yla Y2,Y3, Y4, yS]T = [0 — Nz, 9 + ¢LE5 T] + ¢a Vg, U]T
By these choices of the states, note that the following compatibility
condition (Coulomb-like) arises
v
§W2)s —ys+ —ya =0
€33
Let H} (0,L) = {f € H'(0,L) : f(0) = 0}. Define the linear space
H= {y € (LQ(OaL))s : (y2)x S LQ(OaL)a yQ(O) = yQ(L) = 07
Ey)e —ys + 5ya =0}

and the bilinear form on H x H :

L
aly,z) = / {py1Z1 + EessyaZo + €33y323 + ayaZs + pyszs } da.
0



Current control - Lorenz gauge!, Ozer-AMOP’20

Theorem

The energy E(t) is the norm induced by this inner product, and H is a
Hilbert space with this norm.

Define the operator

0 I —-D, 0 0

— E“ I 0 0 0 0
€33

A= 2D, 0 0 0 XD,
€33 €33
0 0 0 0 D,
Q2 a

0 0 > D, o D, 0

with
Dom(A) = [H(0,L) x Hy(0,L) x (H'(0,L))* x H.(0,L)]
(My €H: (ays+ys) (L) =0},

and the B and B* operators with the new state are

L L
(Bu(t),v)yy = %/0 u(t) o doz = U(t)%/o Yy dx = (u, B*Y)y,



Current control - Lorenz gauge!, Ozer-AMOP’20

Lemma
The operator A : Dom(A) — H.

Theorem

For any g € H there is y € Dom(A) so that Ay = g. That is,
0 € p(A).

Theorem

The operator A satisfies A* = —A on H, and A : Dom(A) CH — H is
the generator of a unitary semigroup {e};>o.

Theorem

Let T > 0, and is(t) € L*(0,T). For any yo € H, y € C[[0,T]; H], and
there exists a positive constants ¢(T') such that

@I < e {Ivollk+ il } -



Current control - Lorenz gauge!, Ozer-AMOP’20

Similar to the Coulomb-gauge model:
For real 7, define

A= apless, B=—(aess+7°) (b — €e336T%) + alppesst?
C= *P7'2€33 (/L - 63357'2) )

ay =

\/B+\/BQ—4AC \/B—\/BQ—ZIAC
, a2 = .
2A 2A

Theorem (Ozer’2020-AMOP)

2
Let a; = 2% ay = 21T and m? + n? > 165?# for m,n € N. For
yo € H, the semigroup {eAt}tzo is not asymptotically stable in H, i.e.

leAtyollg - 0, t— oo. Furthermore, then the system {A, B} is not

asymptotically stabilizable by any bounded state feedback.

Proof: Use Benchimol’s Theorem.



Electrostatic or quasi-static approaches

os(t) # 0,i5(t) = 0: Lasiecka, Komornik, Zuazua, Guo...
os(t) = 0,is(t) # 0: Russell, Rao, Morgul, ...

€33

0, (a+ Lyu(L) =25 ault) ,

€33 eszh

pﬁ—<a+i)vm:0,

(v,0)(2,0) = (vo,v1), &s(0) = 0.

Theorem (Wehbe-EJDE’03)

Let T >0, and i4(t) = (0(L,t) — Kos(t)), K € RT. For any
vo € Dom(A), there ezists a constant C(K) > 0 such that
2C

B(t) < B(0); 7t > 0.



Summary so far! Voltage control: Ozer-MCSS’15

B*—feedback Voltage control
E-static Velocity E.S.
Q-static Velocity E.S.
(e-values on iR)
B*—feedback | Charge control
E-static Velocity E.S.
Q-static Velocity E.S.
(e-values on iR)
B*—feedback Current control
E-static Charge and Tip v. | A.S
Q-static Charge and Tip v. | A.S.

| Not AS. |

(e-values on iR)

[m]

=



Material parameters

P) Density 7600 kg/m®

v | Electromechanical coefficients 10~? C/m?

(o %1 Stiffness constant 121 x 10° N/m2

11 permittivity constant 0.25 x 10~ 12 F/m

€33 permittivity constant 0.25 x 10712 F/m

¢ e 8.3x 10710 L,

I Magnetic impermeability 1.2x 10 ° H/m

h Thickness of the beam 107* m

L Length of the beam 1m
n m Az = ZT_@ A= 175_4) az3 = °F aqs =
2 | 4000 | 7.589 x 107+ | 1.003 x 10% | 12.567 | 34,641.016
5] 30 | 7.589x 1072 | 7.590 x 107+ | 31.416 188.496
1 2 7.580 x 1072 | 7.589 x 107% 6.283 12.567

Table: Eigenvalues {3, A4} of A for the material parameters. The numbers

are rounded to the nearest thousandth, and

T+

j = 3,4 where , /5‘5 = 7.589 x 10".
€33

) _ w

geas

> 0 for every




Electro-magnetic and/or (remedial) mechanical feedback controllers

Case Coulomb-gauge Lorenz-gauge

0.

0 is(t) =0,49(¢)

I is(t) =0,9(t)

I ig(t) = —K [} 6de iy(t) = —K, [} (% + 9) dz

gt) =0 g(t)=0
111 is(t) = is(t) =0
g(t) = —Ky0(L,t) g(t) = —Ky0(L,t)

IV i) =K [FOde iu(t) = K, [ (qu + 9') dz
g(t) = —Ky(L, 1) g(t) = —Ky0(L, 1)



Case Electrostatic or quasi-static

I is(t),9(t) =0

0

I is(t) = (0(L,t) — Kos(t), g(t)

Utilizing the filtered semi-discrete finite differences (Zuazua, Tebou,
)l
)



State: vy (z,t)

Case

Coulomb gauge

Lorenz gauge

I:No con.

II: Only elec. cont.

IIT: Only mech. cont.

IV: Two cont.

005 030 s
Real time(sec)

bt— bt—
-5 =
- T 510
000 008 " o0 000 008 o0 ois
Real time(scc) o1 Real time(set)
-5 -5
. . i-10 5-10
000 008 000 008 " oi0 ots
Roattmesss]” 018 Reattme(ses]



State: vy (z,t)

Case

Electrostatic

0.00 0.05 0.10 015"
Real time(sec)
I: No con.
50
0
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0.00 0.05 .10
II: Only one cont.

Real time(sec)




State: v(x,t)

Case

Coulomb gauge

Lorenz gauge

I: No cont.

IT: Only elec. cont.

III: Only mech. cont.

T1V: Two cont <
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State: v(x,t)

Case Electrostatic
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-200000
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I: No cont. Real time(sec)

F i 400000
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‘ /\ _ 200000
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Voltage (O-Morris-SICON’14) vs. charge vs. current (O-Morris-ESAIM-COCV’20)

B*—feedback Voltage control
E-static Velocity E.S.
Q-static Velocity E.S.
(e-values on iR)
B*—feedback | Charge control
E-static Velocity E.S.
Q-static Velocity E.S.
(e-values on iR)
B*—feedback Current control
E-static Charge and Tip v. | A.S
Q-static Charge and Tip v. | A.S.

(e-values on iR)

[m]

=



o Fully Dynamic Single-layer piezoelectric beam models
@ Charge or Current-controlled
@ Voltage-controlled

© Controllability results

@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations

@ How about Quasi-static or Electrostatic models?
@ Some Simulations

0 Results with Delay & Memory & Thermal effects & Fractional
Damping

@ Nonlinear models vs. Linear models

Q Numerics - Lack of quality work in the literature
@ Toy Problem

@ Wolfram’s Demonstration Projects

«O>» «F»r «

it
.
N
it
-
[y

DA



Various combos of Boundary & Distributed Delays -Multiple papers submitted

There is time delay between the controller /actuator and
observer/sensor. The time delay has to be accounted for to design the
feedback controller since as one considers a small perturbation delay
in the output measurement, the stabilization of vibrations is at stake
[Datko’93].

PVt — QUgy + ’yﬁpazm + a1vy + agvy (t - T) = 07
Pt — BPze + VBVze = 0, (l’,t) € (07 L) X (07 OO)

v(0,t) = p(0,t) =0,
av$(Lat) - Vﬂpm‘(Lat) = 7bl/“f,(Lvt) - Z)Ql)t([/,t - 7—)7
sz(Lat) - ’)/Bruz(Lat) = 7(—"1})/([“,7%) - 1—32[)/,<L7t - T)v t>0,

(v, p, Ut»pt)(ma()) = (Uo(.’L‘),po(.’L‘),Ul(l‘),pl(l‘)), UAS [O’LL

@ Various combos of aq, as, by, bo, c1, co are considered.

@ The effect of the corresponding delay is investigated for the
overall exponential stabilizability dynamics.

@ Utilized the Lyapunov approach.



Long-range dielectric and strain memories

The following PDE model is derived through the variational approach
and it is crucial for certain class of piezoelectric materials
demonstrating time-dependent behavior in the form of
colorredviscoelastic creep and dielectric relaxation.

PVt — QUgz + VBDxe + / M (8$)vgz(t —s)ds= 0 in
0

HPet — ﬂpzm + Vﬁvzm + / )‘2(s)pmx(t - s)ds =0 in (Oa L) X (0, OO)
0

with boundary conditions
v(0,t) = v, (L,t) = p(0,t) = p,(L,t) =0, t>0,

where o 1= o +725 with ay, 8,7 > 0.



Strain memory + Nonlinear external forces + Electrical damping

Consider the case where there is only a strain memory, A\; = A and
Ao = 0, together with nonlinear external forces, and electrical
(current) damping

PVt — QUgz + YPPzz + /OOO A(8)vzz(t — s)ds + fi(v,p) = hi(z) in
1ptt = BPaz + VBVez + g(pt) + f2(v,p) = ha(z) in (0,L) x (0,00)
with boundary conditions

v(0,t) = v (L, t) = p(0,t) = p.(L,t) =0, >0,
initial conditions

U(IL’,O) = UO(x)a Ut(xao) = ’01(1'), p(l’,O) :p0($)7 pt(O,aj) :pl(x)v
v(z, —t) = va(x,t), (x,t) € (0,L) x (0,00),

where vg, v1, v2, po and p; are functions that belong to appropriate
spaces and «q satisfies k1 1= oy — fooo A(s)ds > 0.



Recent work with collaborators-submitted

@ Standard theory with classical constitutive equations for the
relationship between the electric displacement, electric field,
stress and strains do not account for these behaviors.

@ This type of model has never been considered in the literature
due to the existing complexity of PDE models for piezoelectric
beams.

@ The structure of the dynamical system associated with the
solutions of this system allows using the “quasi-stability theory’
in order to obtain the existence of global and exponential
attractors.

)



A novel piezoelectric beam model with Fractional damping + Thermal effects

Modeling : Full electromagnetic effects due to Maxwell’s equations
and with thermal effects by a thorough variational approach.

Let AV : D(AY) C L*(0,L) — L?(0, L) be the fractional power
associated with operator A of order v € (0,1/2).

PVt — QUgy + ’YBPII + 60117 + fl (’U,p) = hl (37) in (07 L) X (Oa T)7
Pt — Bpaca: + fY/BU.’EJC + Aupt + fg(’U,p) = h2($) in (OvL) X (O,T),
By — kBpy + 0V =0 in (0,L)x(0,7)

with clamped-free boundary and initial conditions

0,) = avy (L, t) — 1Bpa(L,t) =0,
0,t) = pz(L,t) — yvy(L,t) =0,

0,t) =0(L,t) =0, t >0,

x,0) = vy, ve(x,0) = vy,

z,0) = po, pe(x,0) = p1,

x,0) = 0g(x), 0:(0,2) =61(z), 0 <z < L.




Recent work with collaborators-submitted

@ Studying the long-time dynamics of fractional piezoelectric beam
with magnetic and thermal effects for the first time;

@ Proving that the dynamical system generated by the system has
a smooth global attractor with finite fractal dimension by the
quasi-stability theory

@ Obtaining the existence of a generalized exponential attractor in
a scale of fractional spaces

o Establishing the stability of global attractors on the perturbation
of the fractional exponent.



o Fully Dynamic Single-layer piezoelectric beam models
@ Charge or Current-controlled
@ Voltage-controlled

© Controllability results
@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations
@ How about Quasi-static or Electrostatic models?
@ Some Simulations

e Results with Delay & Memory & Thermal effects & Fractional
Damping

a Nonlinear models vs. Linear models

e Numerics - Lack of quality work in the literature
@ Toy Problem

@ Wolfram’s Demonstration Projects
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Modeling assumptions - Ozer & Khenner’SPIE’19

Mechanical effects:
@ Mindlin-Timoshenko large displacement assumptions
o Shear is taken into account
e Longitudinal, bending, and, total rotation.
@ Euler-Bernoulli large displacement assumptions

o Only longitudinal and transverse vibrations are taken into
account.

Electro-magnetic effects:
@ Electrostatic, Quasi-static, Fully dynamic.
@ Full set of Maxwell’s equations to start with.

@ Eliminate magnetic effects one-by-one to get to quasi-static or
electro-static models!



Known DP models and results for nonlinear beams

Why distributed parameter (DP) models?

Don’t want the spill-over effect in designing a controller.

The spill-over effects is due to neglecting high-frequency
modes in the controller design (Balas’78).



Known DP models and results for nonlinear beams

o First stab into this problem in the bilinear (affine) DP setting:
A. Kugi, K. Schlacher’99

e Hinged B.C’s are considered. Longitudinal inertia is
ignored.

o Different control designs are proposed such as PD, H,,
disturbance compensation.

@ Port-Hamiltonian DP modelling, T. Voss, J. Sherpen’14

e Clamped B.C’s are considered.
o Quasi-static model is not stabilizable.
e Fully dynamic model is stabilizable.



Known DP models and results for nonlinear beams

o First stab into this problem in the bilinear (affine) DP setting:
A. Kugi, K. Schlacher’99

e Hinged B.C’s are considered. Longitudinal inertia is
ignored.

o Different control designs are proposed such as PD, H,,
disturbance compensation.

@ Port-Hamiltonian DP modelling, T. Voss, J. Sherpen’14

e Clamped B.C’s are considered.
o Quasi-static model is not stabilizable.
e Fully dynamic model is stabilizable.

@ No rigorous DP modeling and control results for

o Cantilevered B.C’s.
o Electrostatic, quasi-static, fully dynamic models.
e Numerical techniques!



Electrostatic - Nonlinear beam model- E-B assumptions

th — 04113h<'”;1: + %wf’)w =0

.. 3 .. ath
phw - p12 Wyo + ig Wyrxs—

[v, w, w,] (0) =0,

[anih (ve + w2)] (L) = =3 V()]

2w, | (L) = —m(t),

3 . 3
%wz - aigl wzmx] (L) = g(t)a
(vvwvbvw)(xvo) = (’UO7U)0,'U1,U)1)~

@ v(x,t) : stretching
@ w(z,t) : bending
@ m(t), g(t) : mechanical controllers; V'(¢) : Voltage

@ Derivation: Full electro-magnetic effects (Maxwell’s equations)
— Variational approach — Discard magnetic effects.



How to stabilize? We try B*—feedback law!

’ Euler-Bernoulli (E-B) | Mindlin-Timoshenko (M-T) |
V(t)=ac (@(LJ) + fOL Wty dx) V(t)=c4(--- same ---)
m(t) = —coty (L, t) m(t) = —cs¥(L, t)
g(t) = cawy(L,t) g(t) = —cg (--- same ---)

Table: Stabilizing feedback controllers. Notice that the voltage controller
V(t) has the nonlinear term fOL wewzdz. This is the contribution of
nonlinearity to the B*—feedback law.



Energy is dissipative!

2
—c ‘@(L,t) + fOL Wy dm‘
W) _ | el 0P -l oP ©8)
dt —c1 ‘@(L,t) + fOL Wyly dm‘ B

—eal (L, t)]* = eslir(L, ) (M-T)

@ Analytic work for exponential stability is underway (preprint).



Nonlinear vs. Linear

Free the mechanical controllers m(t)
nonlinear effects:

pht — ozuhvu =0,

[e3

phi —

[v, w, w,] (0) =0,

ph? .. a1h®

19 Wx 12 Wrzx
(’U,U),?.},U})(l’,()) -

1h3

ajthvg (L) = —y3V (1), 0
[ (1) =T
| () = gt

(v07w07v17w1)7

= ¢(t) =0, and discard all

Weeze = 0,

V(t) can not control the bending motions anymore.



Exponential stabilization results for the linear model- B* —feedback controllers

Let state-feedback be chosen as:

V(t) —ky9(L)
Ft)= | m(t) | =KB*o=| kyin(L) (6)
g(t) —k3w (L)

o Exponential stability of the beam equation with g(t), m(t) #0
(Rao’96, Guo’2002)

@ g(t) is not even necessary for exponential stability!

o Exponential stability of the wave equation (Triggiani’89,
Zuazua’89)

o Exponential stability of the single piezo-beam model (Morris &
Ozer-SICON’14)

@ Lack of exp. stability of the fully dynamic model
(A.0.0Ozer-MCSS-’15); Exponential stability for certain
number-theoretical conditions.

o Exp. stability of the three-layer laminate (Ozer-IEEE-TAC’17,
EECT’18)

CAaale What i d AF ctahilitxr 3¢ Ahtatrnad fAr +hoe vanBEvoear rrmadala?



Unbounded & bilinear control system?

Consider the (E-B) model
Let y = [v,w,V,W]T. Then,

y=UA+N)y+ (B1+ Bay)u(t)
Define the natural energy space as
H=H.(0,L) x H?(0,L) x L*(0,L) x H}(0,L)

where H} (0,L) = {z € H'(0,L) : 2(0) = 0},

H2(0,L) ={z € H?(0,L) : 2(0) = 2,(0) = 0}.
@ A is an infinitesimal generator of a unitary semigroup on H,
@ N : H — H is locally Lipschitz.
@ B; : C — H is unbounded.

@ By : C — H is bounded.



Unbounded & bilinear control system?,  Joint work

Well-posedness is proved.

(]

Analytic work for exponential stability is underway (preprint).

Different combos of boundary feedback and distributed damping
are in consideration.

@ Numerical work - Ozer& Khenner-SPIE-19. There are lots to be
done!



Euler Bernoulli: Uncontrolled

Stretching - v(x,t)
-

N ~_ |

Bending - w(x, t)

2 2
0 Real time(sec) 0 Real time(sec)



Euler Bernoulli: Fully controlled

Stretching - v(x,t)

11.x107%
J1.x107

——
4
Real time(sec)

Bending - w(x, t)

Real time(sec)



Euler Bernoulli: Partially controlled-I: V () # 0,m(t), g(t) = 0

Stretching - v(x,t)

K ~ K \

Bending - w(x, t)

2 p 2
0 Real time(sec) 0 Real time(sec)



Euler Bernoulli: Partially controlled-II: V (t) = 0, m(t), g(t) # 0

Stretching - v(x,t) Bending - w(x, t)

Real time(sec) —
° 2 4 6 L

‘I R —— **V.xm’a
|
|

11316

Real time(sec)



Euler Bernoulli: Tip velocities v(z, t)-Scaled time

[Controlled—Tip Velocity vy
020
0.3
0.15
02
0.0
04
0.05
 Timofses Time{sed)
10 20 30 40 0
k0.1 0.05
Lo.2 Fo.10
Fo.3 rot
Partially controlled I Partially controlled—II-Tip Valociy V|
0.15
03
0.2 D)
01 0.05
. Ti
 Time(sec E] 700 50 00 50 o e
o Lo.os
Loa Fo.10
0.3 F0.15




Euler Bernoulli: Tip velocities w(z, t)-Scaled time

[No control-Tip Velocity- ] Controlled—Tip Velocity— wj|
e 0.0010
0.10
0.0005
0.05
; Time(sec o | Imelsec]
r0.05 1-0.0005
Fo.10
Fo.0010
Fo.1s

Partially controlled~II-Tip Velocity— wy]

[Partially 1-Tip Velocity— Wy

0.0010

0.0005

Time(sec; Time(sec)

300
1-0.0005
£0.0010

£0.0015




Normalized energies? (Scaled time)

(E-B) Total Energy}

@ Voltage controller V(t) is strong.

Controlled

Partially controlled-1

Partially controlled-1I

No control




Mindlin-Timoshenko: Uncontrolled

Stretching - v(z,t)

_— — ,7_‘1.)(10_3

N e

Real time(sec)

Rotation angle - ¥(x,t)

Time(sec)

/—'_'_H"

Bending - w(z, t)

— —

Real time(sec)

—=1.x107*
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Mindlin-Timoshenko: Fully controlled

Stretching - v(z,t) Bending - w(z, t)
. ) T|me(se4c) . J Time(sec)
1.x107

otation angle - v (z,t)

Time(sec)




Mindlin-Timoshenko: Partially controlled: V(t) =0, m(t),g(t) #0

Stretching - v(x,t) Bending - w(z, 1)

Time(sec) Time(sec)

Rotation angle - ¥(x,t)

Time(sec)




Mindlin-Timoshenko: Partially controlled: V (¢) # 0, m(t) = 0,¢9(¢) =0

Stretching - v(x,t) Bending - w(z, 1)
Time(sec) Time(sec)
[ 2 4 6

Rotation angle - ¥(x,t)
o ) T|me(se4c) .

/—.——.7. Vo .‘.4,—.—,ﬁ4|4"




o Fully Dynamic Single-layer piezoelectric beam models
@ Charge or Current-controlled
@ Voltage-controlled

© Controllability results
@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations
@ How about Quasi-static or Electrostatic models?
@ Some Simulations

Q Results with Delay & Memory & Thermal effects & Fractional
Damping

@ Nonlinear models vs. Linear models

° Numerics - Lack of quality work in the literature
@ Toy Problem

@ Wolfram’s Demonstration Projects
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Shocking — Known methods fail for boundary controlled systems!

@ The continuous system is exp. stable but not the reduced model!

@ First observed by H. T. Banks, K. Ito, C. Wang’91.

e Many known techniques fail to mimic the stability behavior
of the differential equations!

o Finite Difference, Finite Element, Mixed-Finite Element,
Galerkin, etc.

o Stiff systems!



Shocking — Known methods fail for boundary controlled systems!

How about Filtered Finite Difference Method?
@ Linear beam equation—L. Leon, E. Zuazua’02
@ Linear wave equation— L.T. Tebou, E. Zuazua’07,
@ Linear wave-equation— A. Marica, E. Zuazua’l4,

@ Nonlinear wave or beam equations (bounded feedback) —F.
Alabau-Boussouira, Y. Privat, E. Trelat’17

o Filtering is necessary since the spurious (artifical or
computer-generated) high frequency solutions destroy the
approximated solution:

For example, adding a damping term da?%,, to the wave
equation filters the artificial high-frequency solutions:

il — Uy — (d2?)0p = 0,u(0,t) = 0,u,(1,t) =| —u(1,1).



Various known techniques fail!
Example [Banks-Wang-90]: A one-dimensional wave equation (with
boundary damping):

w—w"=0, (z,t)€(0,L)xR"
w(0,t) =0, w'(L,t)=—kw(L,t), teR"
IU(Z‘,O) = ’LU()(J)), w(a:,O) = ’LU1(33)7 HAES (O’L)

Known that ||w(z,t)| < C * e“!. Equivalently, Max(Re{\}) < —w.



Various known techniques fail!

Example [Banks-Wang-90]: A one-dimensional wave equation (with
boundary damping):

w—w"=0, (z,t)€(0,L)xR"
w(0,t) =0, w'(L,t)=—kw(L,t), teR"
w(z,0) = wo(x), w(z,0)=wi(z), =z (0,L)

Known that ||w(z,t)| < C * e“!. Equivalently, Max(Re{\}) < —w.
1) [Banks-Wang-90] Polynomial-based Galerkin approach:

Figure 5.1: Locations of the cigenvalues of the matrix A™ for the polynomial based
Galerkin method.




Various known techniques fail!

2) Linear spline based Galerkin approach:

Figure 5.2: Locations of the eigenvalues of the matrix A" for the linear spline based
Galerkin method.

N=10




Various known techniques fail!

3) Cubic spline based Galerkin approach:

Figure 5.2: Locations of the eigenvalues of the matrix A" for the linear spline based
Galerkin method.

N=10




Various known techniques fail!

4) Finite Element approach:

Figure 5.4: Loaction of the eigenvalues of the matrix A" for the finite element
method.




Various known techniques fail for PDEs!

5) Finite Difference approach:

Figure 5.6: Locations of the eigenvalues of the matrix AV for the finite-difference
method.

N=4

N=$ Sl




Various known techniques fail!

6) Mixed Finite Element approach:

Figure 5.5: Location of the eigenvalues of the matrix A” for the mixed finite element
method




What has been done? Remedy?

o Filtering: (Infante & Zuazua’99, Leon & Zuazua’02, Tebou &
Zuazua’06, Bugariu et al’l5, Cindea et al’17)

° ‘ Direct Fourier Filtering

o Indirect Filtering by adding a viscosity term to the PDE

@ Mixed Finite Element method or Polynomial based Galerkin
methods: Glowinski et al’89, Castro & Micu’06

@ Two-grid algorithms: Loreti & Mehrenberger, Negreanu &
Zuazua’03

@ Finite Difference Method without filtering: Liu & Guo’20



Semi-discrete Finite Difference Approximations - Rayleigh Beam

w(x;, t) =~ wi(t), i=12..,N

wq (1) o

wo (1)
@)
w(xo, ) = wg = (L) Wyt = W(xy4q,t) =0
=TT h
N+1 I
x_l | \(_1_\\ | | | A | L | xN+2
| | |
O —m————TT———T—T——T— ©
0=x0 xlxz ‘xl:i*h xN xN+1:L
wy (1) W(Xyyp2 t) = —w(xy, t)

w(x_q1,t) = —w(xq, 1) wy (1)



Discretized beam equation & Fictitious points

Upy = u($i+1)—2u(§i)+u(mi—1) + O(h2)

o u(xi+2)—}l2u(aci+1)+6u]§f1)—4u(ml1)+u(ac,i,2) + O(hg)

umxrz -

Wit (t)— zw](t)+w1 1(t)

w;(t) — o
+Kw1+2(t) 4wJ+1(t)+6th(t) dwj 1 () tw;i—2(t) _ -0,

wo —wN+1 =0, w1 = —wi, WN42 = —WN
w;(0) = w), w;(0) =wl, j=1,2,...,N.



Utilizing the eigenvalue analysis for the discrete —%

Consider the central-finite difference approximation of the differential
2
operator —dd? at z; and the corresponding eigenvalue problem

CYir —2¢ + Y

=\, j=1,2,...,N.

72
Letting ¢ = [¢1, %2, ..., ¢¥n] and
2 =1 0 0 0
-1 2 -1 0 0
1 0o -1 2 -1 0
An= s

Denote the eigenvalues, i.e. Ahz/_; = A@/? by

0< M(h) < Ao(h) < ... < An(h).



Utilizing the eigenvalue analysis of Ay,

Lemma
The eigenvalues A\ and eigenvectors 77/;7C = (Yr,1,Yk2, ..., YpN) for
Ay, are
4 .92 wkh
Ax(h) = ﬁsm <2L)’ k=1,2,...,N,
imkh
1/}kasin<]ﬂ>7 k7j:172"..7N_
’ L

Letting @ = [wy,wa, ..., wy], the model can be written as

Denote the eigenvalues of K (I + aA)~ (—A)*@ = AZ by



E-values & E-vectors of | K (I + aAy) ' (Ap)?

~ K 1
)\k(h): 7)‘k(h)177 k:1727 7N7
o ey T 1
and the corresponding eigenvectors 4,5']“ = (Pr1, Pr.2,---,PrN) Where

iTkh
<Pk7j=0ksin(]WL ) k,j=1,2,...,N.

1

KXi(h) 2 len.il?
i=

to check that A\ (h)h? < 4 and therefore Ay (h)h? < 4% for all b > 0.
As well, Ayh2 — % as h — 0.

and oj = is the normalization constant. It is easy



Convergence fails!

800

600

= Discrete: N=50,100,150,200,250
= Continuous

400

200

—

50 100
Figure: Discrete vs. co

150

200 250 k
ntinuous eigenvalues for K = a = 1.



Uniform gap — 0

for larger k!!!

jk+1 - ;\'k

m Discrete: N=50,100,150,200,250
= Continuous

100

150
Figure: The uniform gap condition for the continuous eigenvalues does
N (h) = A

200 250 k
not hold anymore in the discrete case. For K = a = 1, the gap
Ai(h) = 0ash—0

First observed by Zuazua-Infante’99 for the wave equation

[m]
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Lack of Observability of the approximate model

Theorem (Ozer'19-IEEE-CDC)

Consider & = €'V XN(h)gEN. For anyT >0, as h— 0

su Eh (0) — 00
p 3 .
sol.s of approx. J"T WN2—3WN+1+H3WN—WN -1 dt

0 h3

Theorem (Ozer-Hansen’11-MCSS)

One may also obtain that the operator A : Dom(A) C H — H is the
generator of a unitary semigroup et on H. For given Wy € H,
W € C[R,H], and Ey(t) = 0. Moreover, letting T > -2 there erists

VE
a constant C(T') such that

T
/ ™ (L) 2dt > C(T)|Wol3.
0

Observability inequality



Direct Filtering & Observability

Given 0 < v < 4, we introduce the class Cp(y) of filtered solutions
generated by the eigenvectors such that Ah? < . In particular,

Cu(y) = qii(t) = Y {aksin<\/gt>+bkcos<\/;kt>]@’k

A(k)h2 <y

Theorem (Ozer-IEEE-CDC’19)

Assume that 0 < v < 4. Then, there exists
29 (141 any ) L2(1+87r2 )

T(y,h) = — B > 2L such that for all
4
T > T(v,h) there exists
KL
C(T,~,h) =
24 3 2
2|7 (1= 1) =254 VI (4 ) - 3
such that En(0) < C(T,~,h ‘TN’ dt holds for every solution

in the class Ch(7), umfm“mly as h 0.



After direct filtering: offered by Infante-Zuazua’99, Tebou-Zuazua’06

e (R)h? < | where 7 is chosen:

4t e
@ Discrete-Wave ......

® y=3, Cut-off

[ ]
Y= M es NN S AR NN RN S AR EEEA AR AN fansunnsnunnnnn
y=-2

- . P p e
24 _ out off c
0 10 20 34-cuto 50

Figure: N = 50, = 3 corresponds that the eigen-frequencies A N>34
are filtered

e



After direct filtering

e (R)h? < | where 7 is chosen:

@ Discrete-Wave
" y=3, Cut-off

r

10 30 86 — cut off 90 100
0 30 6 90 100

Figure: N = 100,~ = 3 corresponds that the eigen-frequencies A N>66
are filtered



Ongoing research

@ Mead-Marcus beam, Ozer’20-preprint

u'] + wll// _ BTUI — O

—Cv" 4+ Pv=—-Buw", (x,t) € (0,L) x R"
w(z,t), v'(z,t), w'(z,t)],_o, =0, teR"
w(x,0) = wg, w(x,0)=wi, xz€(0,L)



Mead-Marcus beam, Ozer’20-preprint

@ Mead-Marcus beam, Ozer’20-preprint

Me(h)=(1+BT(CA,+P)'B)\}, k=1,...,N.,

and the corresponding eigenvectors @"“ = (Pk,15Pk,2s - - s PEN)
where

inkh
WJ:UNm(ﬁL>, kj=1,2,...,N

Here notice that since Ay, is a positive definite symmetric matrix,
both C Ay, + P and (CAj, + P)~! are positive definite, and
therefore the scalar BT (C Ay, + P)™'B is strictly positive.



Mead-Marcus beam, Ozer’20-preprint

@ Mead-Marcus beam, Ozer’20-preprint

Let oy = L ~ be the
(1+BT(CAR+P)TIB)AL(R) 3 on,5l?

normalization constant. It is easy to check that A (h)h? < 4 and
therefore A, (h)h? < 4(1+ BT(C A, + P)"'B) for all h > 0. As
well, A\yh? — 4(1 + BT (CA, + P)™'B) as h — 0.



o Fully Dynamic Single-layer piezoelectric beam models
@ Charge or Current-controlled
@ Voltage-controlled

© Controllability results
@ Coulomb gauge fixing due to Maxwell’s equations
@ Lorenz gauge fixing due to Maxwell’s equations
@ How about Quasi-static or Electrostatic models?
@ Some Simulations

e Results with Delay & Memory & Thermal effects & Fractional
Damping

@ Nonlinear models vs. Linear models

e Numerics - Lack of quality work in the literature
@ Toy Problem

© Wolfram’s Demonstration Projects
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Other ongoing and future research

@ Numerics for the piezoelectric beam, Ozer’ & Wilson’20-preprint

@ Numerics for the Laminate designs, Ozer’19-IFAC,
Ozer’20-preprint

@ | Observability < Controllability < Energy Harvestmg‘

@ Wolfram Demonstration Projects (nontrivial laminate models)



Would like to be a Graduate Research Assistant in your second year?

o WKU-RCAP grant. Deadline is February 2020.

o KY NASA GF grant (Must be a US citizen). Deadline is April
2020.

o KY NSF EPSCoR RA Award. Deadline is ~ April-May 2020.

@ If you are interested, contact me at ozkan.ozer@wku.edu to have
a Zoom meeting.

@ If the grant is not funded, you still have GTA-ship. We still work
on your MSc thesis.



Thanks for your attention.
o NSF EPSCoR Grant is greatly appreciated.

o

Any question?
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