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Context

I The unique continuation principle is fundamental in the analysis of
partial differential equations.

I Quantitative unique continuation (propagation of smallness) is often
used, e.g. in control theory and inverse problems.

I Unique continuation problems are severely ill-posed and solving them
numerically requires regularisation.

I There is a need for numerical methods with proven error estimates
(convergence rates in terms of the discretisation parameter).



Unique continuation (UC)

Let L be an elliptic operator and let ω ⊂ B ⊂ Ω ⊂ Rn be open, bounded
and connected sets. Given f ∈ H−1(Ω), uω ∈ H1(ω), find u ∈ H1(Ω) such
that {

Lu = f in Ω,

u = uω in ω.
(1)

We will focus on finding u in B.

Ω

B

ω



Ill-posedness and the Cauchy problem

Let the linear operator Auc : H1(Ω)→ H−1(Ω)× H1(ω) given by
Aucu = (Lu, u|ω). The range of this operator is not closed and its
pseudo-inverse is discontinuous. There is no constant C > 0 such that for
any u ∈ H1(Ω)

‖u‖H1(Ω) ≤ C
(
‖Lu‖H−1(Ω) + ‖u‖H1(ω)

)
.

A variation of Hadamard’s example can be used to show this. Also, UC is
related to the Cauchy problem

Lu = f in Ω,

u = gD on Γ,

∇u · n = gN on Γ,

(2)

where Γ ⊂ ∂Ω smooth and f ∈ H−1(Ω), gD ∈ H
1
2 (Γ), gN ∈ H−

1
2 (Γ).



Conditional stability estimates (three-ball inequalities)

We prove that a solution u ∈ H1(Ω) to the UC problem satisfies

‖u‖L2(B) ≤ Cst

(
‖u‖L2(ω) + ‖Lu‖H−1(Ω)

)κ
‖u‖1−κ

L2(Ω) .

for a stability constant Cst > 0 and a Hölder exponent κ ∈ (0, 1).
We focus on

I convection–diffusion Lu = −µ∆u + β · ∇u, µ > 0, β ∈W 1,∞(Ω)n.

I Helmholz Lu = −∆u − k2u, k > 0.

! We track the dependence of Cst on the physical parameters.



Conditional stability estimate. Convection–diffusion

Lemma (Carleman estimate for the Laplacian)

Let ρ ∈ C 3(Ω) and K ⊂ Ω be a compact set with no critical points of ρ.
Let α, τ > 0 and φ = eαρ. Let w ∈ C 2

0 (K ). Then there is C > 0 such that∫
K
e2τφ(τ3w2 + τ |∇w |2)dx ≤ C

∫
K
e2τφ|∆w |2 dx ,

for α large enough and τ ≥ τ0, where τ0 > 1 depends only on α and ρ.

We use it to prove a three-ball inequality for convection–diffusion.

I Denote Bi = B(x0, ri ), i = 0, 1, 2. Take K = Ω \ B0.

I Take ρ(x) = −d(x , x0) outside B0.

I Multiply by µ2 and insert β · ∇w in the RHS.

I Take w = χu for a certain cut-off χ.

I Take τ ≥ τ0 + 2|β|2/µ2.



Three-ball inequality. Convection–diffusion

Corollary

Let x0 ∈ Ω and 0 < r1 < r2 < d(x0, ∂Ω). Then there are C > 0 and
κ ∈ (0, 1) such that for µ > 0, β ∈ [L∞(Ω)]n and u ∈ H2(Ω) it holds that

‖u‖H1(B2) ≤ CeCP̃e
2
(
‖u‖H1(B1) +

1

µ
‖Lu‖L2(Ω)

)κ
‖u‖1−κ

H1(Ω) ,

where P̃e = 1 + |β|/µ and |β| = ‖β‖L∞(Ω)n .

We want to weaken the norms in the RHS for the FEM analysis.



Lemma (Shifted three-ball inequality)

Let x0 ∈ Ω and 0 < r1 < r2 < d(x0, ∂Ω). Then there are C > 0 and
κ ∈ (0, 1) such that for µ > 0, β ∈ [L∞(Ω)]n and u ∈ H1(Ω) it holds that

‖u‖L2(B2) ≤ CeCP̃e
2︸ ︷︷ ︸

Cst

(
‖u‖L2(B1) +

1

µ
‖Lu‖H−1(Ω)

)κ
‖u‖L2(Ω)

1−κ,

where P̃e = 1 + |β|/µ and |β| = ‖β‖[L∞(Ω)]n .

Corollary

For µ > 0, β ∈ [W 1,∞(Ω)]n having ess supΩ∇ · β ≤ 0, and u ∈ H1(Ω) it
holds that

‖u‖H1(B2) ≤ Cst(‖u‖L2(B1) +
1

µ
‖Lu‖H−1(Ω))κ(‖u‖L2(Ω) +

1

µ
‖Lu‖H−1(Ω))1−κ.



Helmholtz equation. Stability for UC

I Conditional stability estimates with explicit dependence on the wave
number k when B \ ω ⊂ Ω, e.g.

‖u‖H1(B) ≤ Cst(‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

)α ‖u‖1−α
H1(Ω)︸ ︷︷ ︸

apriori bound

.

I If there is a line that intersects B but not ω, then Cst = C (k) blows
up faster than any polynomial in k [Burman–M.N.–Oksanen]. See
also [Berge-Mallinikova’20] for exponential blow-up.

I Assuming suitable convexity, the constant Cst is independent of k.

I Weaker norms in the RHS appropriate for numerical analysis.



Hemlholtz equation. Convexity assumption



Previous results. Increased stability estimate

In this convex setting, it holds for F = ‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

that

‖u‖L2(B) ≤ CF + Ck−1Fα ‖u‖1−α
H1(Ω) ,

where the constants C and α are independent of k [Hrycak–Isakov’04].



Previous results. Increased stability estimate

In this convex setting, it holds for F := ‖u‖H1(ω) +
∥∥∆u + k2u

∥∥
L2(Ω)

that

‖u‖L2(B) ≤ CF + Ck−1Fα ‖u‖1−α
H1(Ω) , (3)

For a plane wave u(x) = e ikkk·x , with |kkk | = k , it holds that

‖u‖H1(ω) ∼ (1 + k) ‖u‖L2(ω) .

An analogue of (3) with both sides at the same Sobolev scale could be

‖u‖L2(B) ≤ CkE + CEα ‖u‖1−α
L2(Ω) ,

where E := ‖u‖L2(ω) +
∥∥∆u + k2u

∥∥
H−1(Ω)

.



Shifting in the Sobolev scale

Recall that E = ‖u‖L2(ω) +
∥∥∆u + k2u

∥∥
H−1(Ω)

. We show a stronger

estimate than

‖u‖L2(B) ≤ CkE + CEα ‖u‖1−α
L2(Ω) .

Lemma [Burman–M.N.–Oksanen]. For a suitable convex geometry
ω ⊂ B ⊂ Ω, there are C > 0 and α ∈ (0, 1) such that for all k ≥ 0,

‖u‖L2(B) ≤ CEα ‖u‖1−α
L2(Ω) .

Our numerical analysis is based on such estimates.



FEM for well-posed convection–diffusion problems1, 2

−µ∆u + β · ∇u = f in Ω, u = 0 on ∂Ω, µ� |β|.

I Standard methods give spurious oscillations due to sharp layers.

I Hence the need for stabilisation, e.g. streamline diffusion (or SUPG),
Galerkin Least Squares, dG, continuous interior penalty, etc.

1M. Stynes. “Steady-state convection-diffusion problems”. In: Acta Numerica 14
(2005), pp. 445–508.

2V. John, P. Knobloch, and J. Novo. “Finite elements for scalar
convection-dominated equations and incompressible flow problems: a never ending
story?” In: Comput. Vis. Sci. 19.5 (2018), pp. 47–63.



Continuous Interior Penalty (CIP)3, 4

Let Th be a triangulation of Ω into elements K with maximal diameter h.
Let Vh := {vh ∈ C (Ω̄) : vh|K ∈ P1(K ),K ∈ Th}. The PDE weak form

a(uh, vh) := (µ∇uh,∇vh)Ω + (β · ∇uh, vh)Ω − 〈µ∇uh · n, vh〉∂Ω .

The CIP-FEM reads as follows: Find uh ∈ Vh such that

a(uh, vh) + scip(uh, vh) = f (vh), ∀vh ∈ Vh,

where for Fi denoting the set of internal edges/faces we define

scip(uh, vh) :=
∑
F∈Fi

∫
F
h2J∇uh · nKF J∇vh · nKF ds.

3J. Douglas and T. Dupont. “Interior penalty procedures for elliptic and parabolic
Galerkin methods”. In: Computing methods in applied sciences. Springer, 1976,
pp. 207–216.

4E. Burman and P. Hansbo. “Edge stabilization for Galerkin approximations of
convection-diffusion-reaction problems”. In: Comput. Methods Appl. Mech. Engrg. 193
(2004), pp. 1437–1453.



Discretise-then-regularise approach for unique continuation

For (uh, zh) ∈ Vh ×Wh, consider the discrete regularised Lagrangian

Lh(uh, zh) : = 1
2sω(uh − Ũω, uh − Ũω)︸ ︷︷ ︸

data term(L2 norm)

+ a(uh, zh)− (f , zh)Ω︸ ︷︷ ︸
PDE constraint

+ 1
2s(uh, uh)− 1

2s
∗(zh, zh)︸ ︷︷ ︸

stabilisation

, Ũω = u|ω + δu.

The optimality conditions read as: Find (uh, zh) ∈ Vh ×Wh such that{
a(uh,wh)− s∗(zh,wh) = (f ,wh)Ω

sω(uh, vh) + a(vh, zh) + s(uh, vh) = sω(Ũω, vh)
∀(vh,wh) ∈ Vh×Wh.

(4)
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Heuristics for regularisation

The critical points of Lh satisfy{
a(uh,wh)− s∗(zh,wh) = (f ,wh)Ω, ∀wh ∈Wh,

sω(uh, vh) + a(vh, zh) + s(uh, vh) = sω(Ũω, vh), ∀vh ∈ Vh.

If zh → 0 and s(uh, uh)→ 0 as h→ 0, then this “converges” to the weak
formulation {

a(u,w) = (f ,w), ∀w ∈ H1
0 (Ω),

(u, v)ω = (Ũω, v)ω, ∀v ∈ H1(Ω).

So the discrete stabilizer s must be:

I “weak” enough (weakly consistent).

I “strong” enough for the system to have a unique solution.



UC for the Helmholtz equation. Lagrangian

Let Wh = Vh ∩ H1
0 (Ω). For (uh, zh) ∈ Vh ×Wh, consider the discrete

Lagrangian

Lh(uh, zh) : =
1

2
‖uh − Ũω‖L2(ω) + ah(uh, zh)− (f , zh)Ω

+
1

2
s(uh, uh)− 1

2
s∗(zh, zh), Ũω = u|ω + δ.

Weak bilinear form of the PDE is ah(uh, zh) := (∇uh,∇zh)Ω − k2(uh, zh)Ω

and the discrete stabilisers are

s(vh,wh) :=
∑
F∈Fi

∫
F
hJ∇vh · nKF J∇wh · nKF ds + h2k4(vh,wh)Ω,

s∗(vh,wh) := (∇vh,∇wh)Ω.



Error estimates
I We use the residual of the PDE and the continuum estimate

‖u − uh‖L2(B) ≤ C (‖u − uh‖L2(ω) + ‖r‖H−1(Ω))α ‖u − uh‖1−α
L2(Ω) .

I First we prove that the stabilizing terms and the data fitting term
must vanish at an optimal rate for smooth solutions

|||(uh − πhu, zh)||| ≤ Ch(‖u‖H2(Ω) + k2 ‖u‖L2(Ω)),

where |||(uh, zh)|||2 = ‖uh‖2
ω + s(uh, uh) + s∗(zh, zh).

I We then bound the residual by these terms. We finally obtain:

Theorem [Burman–M.N.–Oksanen]. Let (uh, zh) ∈ Vh ×Wh be the unique
critical point of the Lagrangian Lh. Then for all k , h > 0, satisfying
kh ≤ 1, it holds that

‖u − uh‖L2(B) ≤ Chαk2α−2
(
‖u‖H2(Ω) + k2 ‖u‖L2(Ω) + h−1 ‖δu‖L2(ω)

)
.



Helmholtz computational domains
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Figure: Data set ω (grey) and target region B (dotted).



Convex vs non-convex

(a) Convex direction. (b) Non-convex direction disc.

Figure: Absolute errors, exact solution u(x , y) = sin kx√
2

cos ky√
2

, k = 10. Mesh

size h ≈ 0.0025.



Convex vs non-convex, increased wave number

(a) Convex direction. (b) Non-convex direction disc.

Figure: Absolute errors, exact solution u(x , y) = sin kx√
2

cos ky√
2

, k = 50. Mesh

size h ≈ 0.0025.



Convex vs non-convex, Gaussian bump
u = exp

(
− (x−0.5)2

2σx
− (y−1)2

2σy

)
, σx = 0.01, σy = 0.1, k = 10.



Comparison of the errors for the Gaussian bump

Left. Convex case. Right. Non-convex case.



Convergence: a convex case

Circles: H1-error, rate ≈ 0.64. Squares: L2-error, rate ≈ 0.66. Down
triangles: h−1s(uh, uh), rate ≈ 1. Up triangles: ‖∇zh‖ , rate ≈ 1.3.



Convergence: a non-convex case



Convergence: the effect of noise in the convex case

‖u − uh‖L2(B) ≤ Chαk2α−2
(
‖u‖H2(Ω) + k2 ‖u‖L2(Ω) + h−1 ‖δu‖L2(ω)

)
.

Left. Perturbation O(h). Right. Perturbation O(h2).



Convection–diffusion equation. Lagrangian

For (uh, zh) ∈ [Vh]2, consider the discrete Lagrangian functional

Lh(uh, zh) : =
1

2
sω(uh − Ũω, uh − Ũω)︸ ︷︷ ︸

data term

+ ah(uh, zh)− (f , zh)Ω︸ ︷︷ ︸
PDE constraint

+
γ

2
s(uh, uh)− γ∗

2
s∗(zh, zh)︸ ︷︷ ︸

stabilisation

, Ũω = u|ω + δu,

where sω(vh,wh) := h−ζ(µ+ |β|h)(vh,wh)ω, ζ ∈ {0, 2} and

s(vh,wh) :=
∑
F∈Fi

∫
F

(µ+ |β|h)hJ∇vh · nKF J∇wh · nKF ds,

s∗(vh,wh) := (µ∇vh,∇wh)Ω + sΩ(vh,wh) +
〈
(|β|+ µh−1)vh,wh

〉
∂Ω
.



Discrete solution and condition number

Proposition

The discrete system has a unique solution (uh, zh) ∈ [Vh]2 and the
Euclidean condition number K2 of the system matrix satisfies

K2 ≤ Ch−4.

Notice that K2 does not depend on µ and β.



Diffusion-dominated regime, i.e. |β|h < µ
Assume that |β|1,∞ ≤ C |β|. Introduce the norm

‖(vh,wh)‖2
s := sω(vh, vh) + s(vh, vh) + s∗(wh,wh).

I We use the residual of the PDE and the continuous stability estimate

‖u−uh‖L2(B) ≤ CeCP̃e
2
(
‖u − uh‖L2(ω) +

1

µ
‖r‖H−1(Ω)

)κ
‖u−uh‖1−κ

L2(Ω)
.

I First we prove that the stabilising terms and the data fitting term
must vanish at an optimal rate for smooth solutions

‖(πhu − uh, zh)‖s ≤ C (µ
1
2 h + |β| 12 h 3

2 )(|u|H2(Ω) + h−1‖δ‖ω).

I We then bound the residual by these terms. We finally obtain

‖u − uh‖L2(B) ≤ ChκeCP̃e
2

(‖u‖H2(Ω) + h−1‖δu‖ω).



Numerical examples when diffusion dominates
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(b) β = 100(x + y , y − x),
∇ · β = 200.



Convergence rates, u = 30x(1− x)y(1− y), µ = 1
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(a) Circles: H1-error, rate ≈ 0.45;
Squares: L2-error, rate ≈ 0.56; Up

triangles: s(eh, eh)
1
2 , rate ≈ 1.1; Down

triangles: s∗(zh, zh)
1
2 , rate ≈ 1.33.

10−24× 10−3 6× 10−3

log of meshsize

10−4

10−3

10−2

10−1

lo
g

(b) Circles: H1-error, rate ≈ 0.29; Squares:
L2-error, rate ≈ 0.42; Up triangles:
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1
2 , rate ≈ 1.32; Down triangles:

s∗(zh, zh)
1
2 , rate ≈ 1.34.

Figure: (L): β = (1, 0). (R): β = 100(x + y , y − x).



Error contour plot when diffusion dominates

Figure: µ = 1, β = (1, 0). Data given in a centred disk of radius 0.1 for the exact
solution u = 2 sin(5πx) sin(5πy).



Transition to dominant convection. Error contour plot

(a) µ = 10−2, β = (1, 0). (b) µ = 10−6, β = (1, 0).

Figure: Data given in a centred disk of radius 0.1 for the exact solution
u = 2 sin(5πx) sin(5πy).



Convection–dominated regime, µ . |β|h

The numerical method is essentially the same, the only change consists in
a stronger penalty in the data term, from

sω(vh,wh) := (µ+ |β|h)(vh,wh)ω,

to
sω(vh,wh) := (µh−2 + |β|h−1)(vh,wh)ω.

The error analysis is fundamentally different:

I We make no use of the conditional stability estimate.

I We now study local error estimates along the characteristics.



Stability region when β = (β1, 0)

Ω

0 x

y−

y+

ẙ−

ẙ+

(β1, 0)

O(h
1
2 log(1/h))

Figure: Data set ω (gray) and the stability region ω̊β (hatched).

ω := (0, x)× (y−, y+) with x > h and y+ − y− > h,

ω̊β := {p ∈ ωβ : dist(p,Ω \ ωβ) ≥ cλh
1
2 ln(1/h)}.



Downstream case, β1 > 0

We consider a Lipschitz weight function

ϕ := ψ1ψ2 ∈ (0, 1),

that will be used in the weighted norms, where ψ1(x , y) := e−x and

ψ2 =

{
1, in ω̊β
O(h3), in Ω \ ωβ

, β · ∇ψ2 = 0, |∇ψ2| ≤ Ch−
1
2 .

We take

ψ2(x , y) :=


exp((ẙ+ − y)/(λh

1
2 )), y > ẙ+

1, (x , y) ∈ ω̊β
exp((y − ẙ−)/(λh

1
2 )), y < ẙ−.



Downstream estimate

For the weighted norm

|||vh|||2ϕ := ‖|β| 12 vhϕ
1
2 ‖2

Ω + ‖µ 1
2∇vhϕ

1
2 ‖2

Ω + ‖|β · n| 12 vhϕ
1
2 ‖2
∂Ω+ ,

we prove the following error estimate

|||u − uh|||ϕ ≤ C (|β| 12 h 3
2 |u|H2(Ω) + |β| 12 h− 1

2 ‖δ‖ω).

This means that in the stability region one has the quasi-optimal estimate

‖u − uh‖L2(ω̊β) ≤ C (|β| 12 h 3
2 |u|H2(Ω) + |β| 12 h− 1

2 ‖δ‖L2(ω)).



Upstream case, β1 < 0

Now we take ψ1(x , y) := −e−x and ϕ := ψ1ψ2 ∈ (−1, 0). The weighted
norm

|||vh|||2ϕ := ‖|β| 12 vh|ϕ|
1
2 ‖2

Ω + ‖|β · n| 12 vh|ϕ|
1
2 ‖2
∂Ω− .

Denoting the Péclet number by Pe(h) := |β|h/µ, we prove the estimates

|||u − uh|||ϕ ≤ C (|β| 12 h|u|H2(Ω) + |β| 12 h−1‖δ‖ω), when 1 < Pe(h) < h−1,

and

|||u − uh|||ϕ ≤ C (|β| 12 h 3
2 |u|H2(Ω) + |β| 12 h− 1

2 ‖δ‖ω), when Pe(h) > h−1.



Conclusions

I Unique continuation for the Helmholtz and convection–diffusion
equations.

I Conditional Hölder stability estimates that are explicit in the physical
parameters and with norms suitable for finite element analysis.
Carleman estimates represent the starting point, then the norms are
shifted.

I Stabilised finite element methods in a discretise-then-regularise
approach. Discrete regularisation through continuous interior penalty.

I Error estimates that are explicit in the physical parameters.

I Convergence rates that reflect the continuum stability of the
problems.
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