Asymptotic behavior of one-dimensional wave equations with set-valued boundary damping

Guilherme Mazanti
Joint work with Yacine Chitour and Swann Marx
Sequel to the previous talk by Swann Marx

Webinar “Control in Time of Crisis”
22 April 2021
Outline

1. Equivalent discrete-time dynamical system
2. Decay rates
3. Arbitrarily slow convergence
4. The case of the sign set-valued map
5. Input-to-state stability

Asymptotic behavior of one-dimensional wave equations with set-valued boundary damping

Guilherme Mazanti
Equivalent discrete-time dynamical system

<table>
<thead>
<tr>
<th>Solution z</th>
<th>Function g</th>
<th>Sequence $(g_n)_n$</th>
</tr>
</thead>
</table>
| $\begin{align*}
\partial_{tt}^2 z(t,x) &= \partial_{xx}^2 z(t,x) \\
z(t,0) &= 0 \\
(\partial_t z(t,1), -\partial_x z(t,1)) &\in \Sigma
\end{align*}$ | $g(t) \in S(g(t-2))$ | $g_{n+1}(t) \in S(g_n(t))$ |
| $X_p = W_{*}^{1,p}(0,1) \times L^p(0,1)$ | $L^p_{\text{loc}}(-1, +\infty)$ | $Y^\mathbb{N}_p = [L^p(-1, 1)]^\mathbb{N}$ |

For $p \neq +\infty$,

$$
\| (u, v) \|_{X_p} = \begin{cases}
\frac{1}{\sqrt{2}} \left[\int_0^1 \left(|u'|^p + |v|^p + |u'|^p - |v|^p \right) ds \right]^{\frac{1}{p}} & p < +\infty \\
\frac{1}{\sqrt{2}} \max \left(\| u' + v \|_{L^\infty}, \| u' - v \|_{L^\infty} \right) & p = +\infty
\end{cases}
$$

For $p = +\infty$,

$$
\| z(t) \|_{X_p} = \| g(t + \cdot) \|_{L^p(-1,1)}
$$

It suffices to consider the sequence $(g_n)_n$ to study the asymptotic behavior of z!
Equivalent discrete-time dynamical system

Summarizing: studying

\[
\begin{align*}
\partial_{tt}^2 z(t, x) &= \partial_{xx}^2 z(t, x) \\
z(t, 0) &= 0 \\
(\partial_t z(t, 1), -\partial_x z(t, 1)) &\in \Sigma
\end{align*}
\]

in \(X_p = W^{1,p}_\ast \times L^p\) is the same as studying

\[
g_{n+1}(t) \in S(g_n(t)) \quad t \in [-1, 1], \ n \in \mathbb{N}
\]

in \(Y_p = L^p(-1, 1)\) with \(\text{Graph}(S) = R\Sigma\)
Decay rates

How fast do solutions converge to 0?

Nonlinear sector condition:

- In terms of Σ: $\exists q \in C^1$ such that $q(0) = 0$, $0 < q(x) < x$, $|q'(x)| < 1$ for $x > 0$ such that $q(|x|) \leq |y|$ and $q(|y|) \leq |x|$ for all $(x, y) \in \Sigma$.

- In terms of S: $\exists Q \in C^1$ and $M > 0$ such that $Q(0) = 0$, $0 < Q(x) < x$, $Q'(x) > 0$ for $x > 0$ such that $|y| \leq Q(|x|)$ for all $y \in S(x)$.

$$Q(x) = \sqrt{2}(q + Id)^{-1}(\sqrt{2}x) - x$$
Assume that Σ satisfies a nonlinear sector condition with functions q and Q as before. Then

$$\|z(t)\|_{X_\infty} \leq Q\lfloor \frac{t}{2} \rfloor (\|z(0)\|_{X_\infty})$$

$$Q^n = Q \circ \cdots \circ Q$$

- Similar statement for $p < +\infty$ but with additional terms

- $\|z(t)\|_{X_p} \geq C_1 Q\lfloor \frac{t}{2} \rfloor (C_2)$ for non-trivial solutions if

- If Σ is the graph of q or q^{-1}: $\|z(t)\|_{X_p} \sim Q\lfloor \frac{t}{2} \rfloor (C)$
Decay rates

Theorem ([Chitour, Marx, Mazanti])

Assume that Σ satisfies a nonlinear sector condition with functions q and Q as before and let $x_0 > 0$

1. Assume that $q'(0) = 0$. Then there exists a sequence $(t_n)_n$
 with $t_n \sim n$ as $n \to +\infty$ such that
 $$Q^n(x_0) = V(t_n) \quad \forall n \in \mathbb{N}$$
 where V is the solution of $V'(t) = -\sqrt{2}q(\sqrt{2}V(t))$ with
 $V(0) = x_0$

If moreover $z \mapsto \frac{V^{-1}(z)q(\sqrt{2}z)}{z}$ is bounded on $(0, x_0]$, then
 $$Q^n(x_0) \sim V(n) \quad \text{as } n \to +\infty$$

Same as [Vancostenoble, Martinez; 2000], but for set-valued damping and with the stronger conclusion $Q^n(x_0) \sim V(n)$ under an additional assumption
Theorem ([Chitour, Marx, Mazanti])

Assume that Σ satisfies a nonlinear sector condition with functions q and Q as before and let $x_0 > 0$

1. Assume that $q'(0) \in (0, 1)$ and let $\lambda = 2 \text{artanh}(q'(0))$. Then
$$\ln Q^{[n]}(x_0) \sim -\lambda n$$ as $n \to +\infty$

If moreover $\sum_{k=0}^{\infty} \psi(e^{-\lambda k}) < +\infty$, where
$$\psi(r) = \sup_{s \in (0, r]} \left| \frac{q(s)}{s} - q'(0) \right|,$$
then $\exists C > 1$ s.t.
$$C^{-1} e^{-\lambda n} \leq Q^{[n]}(x_0) \leq C e^{-\lambda n} \quad \forall n \in \mathbb{N}$$

Linear behavior of Σ close to 0 yields exponential decay
Decay rates

Theorem ([Chitour, Marx, Mazanti])

Assume that \(\Sigma \) satisfies a nonlinear sector condition with functions \(q \) and \(Q \) as before and let \(x_0 > 0 \)

Assume that \(q'(0) = 1 \). Then

\[
\lim_{n \to +\infty} e^{\lambda n} Q^n(x_0) = 0 \quad \text{for every } \lambda > 0
\]

If moreover \(\exists C > 0, \alpha > 0 \) s.t. \(|q(s) - s| \leq C |s|^{1+\alpha} \) for small, then \(\exists C_* > 0, \mu_* > 0 \) s.t.

\[
Q[n](x_0) \leq C_* e^{-\mu_*(1+\alpha)^n} \quad \forall n \text{ large enough}
\]

Faster than any exponential if \(q'(0) = 1 \)

Recall: finite-time convergence for \(\sigma(x) = x \)
Previous results: (σ is odd, expressions below for s > 0 small and t large) e.g. [Vancostenoble, Martinez; 2000] [Alabau-Boussouira; 2012]

\[
\sigma(s) = s^p \quad \implies \quad \|z(t)\|_{X_2} \sim t^{-\frac{1}{p-1}} \quad p > 1
\]

\[
\sigma(s) = s^p \left(\ln \left(\frac{1}{s} \right) \right)^q \quad \implies \quad \|z(t)\|_{X_2} \sim t^{-\frac{1}{p-1}} \left(\ln t \right)^{-\frac{q}{p-1}} \quad p > 1, q > 0
\]

\[
\sigma(s) = e^{-\frac{1}{sp}} \quad \implies \quad \|z(t)\|_{X_2} \sim (\ln t)^{-\frac{1}{p}} \quad p > 0
\]

\[
\sigma(s) = e^{-e^{1/s}} \quad \implies \quad \|z(t)\|_{X_2} \sim (\ln \ln t)^{-2}
\]

\[
\sigma(s) = e^{-\left(\ln \left(\frac{1}{s} \right) \right)^p} \quad \implies \quad \|z(t)\|_{X_2} \sim e^{-\left(\ln t \right)^{\frac{1}{p}}} \quad 1 < p < 2
\]

\[
\sigma(s) = s \left(\ln \left(\frac{1}{s} \right) \right)^{-p} \quad \implies \quad \|z(t)\|_{X_2} \lesssim e^{-C t^{\frac{1}{p+1}}} \quad p > 0
\]

- We can retrieve the same behaviors, in any \(X_r, r \in [1, +\infty] \)
- We can obtain the precise asymptotic behavior in the last case!
Theorem ([Chitour, Marx, Mazanti])

Assume that Σ is the graph of the odd function σ defined for $s > 0$ by $\sigma(s) = s \left(\ln \left(\frac{1}{s} \right) \right)^{-p}$. Then nontrivial solutions z of the wave equation satisfy

$$
\|z(t)\|_{\mathcal{X}} \sim \frac{1}{\sqrt{2}} e^{-\sum_{k=0}^{N} \alpha_k t} \frac{1-2pk}{p+1}
$$

where $N = \left\lfloor \frac{1}{2p} \right\rfloor$, $\alpha_0 = (p + 1)^{\frac{1}{p+1}}$, and $\alpha_1, \ldots, \alpha_N$ are real constants.
Arbitrarily slow convergence

Theorem ([Chitour, Marx, Mazanti])

Assume that \(\Sigma \subset \{(x, y) \mid |x| \leq C \text{ or } |y| \leq C\} \) for some \(C > 0 \).
Then, \(\forall p \in [1, +\infty) \forall \varphi : [0, +\infty) \to (0, +\infty) \) decreasing to 0, \(\exists \) an initial condition in \(X_p \) s.t. \(\forall \) solution \(z \)
\[
\|z(t)\|_{X_p} \geq \varphi(t)
\]

- Conjectured in [Vancostenoble, Martinez; 2000]
- Assumptions satisfied if \(\sigma \) is saturated
- If \(|x| \) is large and \(y \in S(x), |y| \geq |x| - \sqrt{2}C \)
- Initial conditions with explosions (whence \(p < +\infty \)
The case of the sign set-valued map

\[\Sigma \text{ is the graph of } \text{sign}(x) = \begin{cases} \{ \sqrt{2} \frac{x}{|x|} \} & \text{if } x \neq 0 \\ [-\sqrt{2}, \sqrt{2}] & \text{if } x = 0 \end{cases} \]

\[S \text{ is single-valued: } S(x) = \begin{cases} \frac{x}{|x|} & \text{if } |x| \leq 1 \\ 2 - x & \text{if } x > 1 \\ -2 - x & \text{if } x < -1 \end{cases} \]
From the previous results, \exists solution

Theorem ([Chitour, Marx, Mazanti])

Let z be a solution of the wave equation and consider the corresponding sequence $(g_n)_{n \in \mathbb{N}}$. Let

$$g_\infty(s) = (-1)^{K(s)} \frac{g_0(s)}{|g_0(s)|} (|g_0(s)| - 2K(s))$$

where $K(s) = \left\lfloor \frac{|g_0(s)|+1}{2} \right\rfloor$ and z_∞ be the solution of the wave equation whose corresponding sequence starts from g_∞. Then z_∞ is 2-periodic,

$$\lim_{t \to +\infty} \|z(t) - z_\infty(t)\|_{X_p} = 0,$$

and the above convergence is in finite time if $p = +\infty$.
The case of the sign set-valued map

With respect to [Cheng-Zhong Xu, Gen Qi Xu; 2019]:

- Existence and uniqueness are straightforward (instead of using semigroup theory in a Hilbertian setting)
- Holds for $p \in [1, +\infty]$ instead of only $p = 2$
- The limit is more explicitly identified (instead of based on a Fourier series expansion)
Input-to-state stability

What if there is a disturbance in the boundary condition?

\[
\begin{cases}
\partial_{tt}z(t, x) = \partial_{xx}z(t, x) \\
z(t, 0) = 0 \\
(\partial_tz(t, 1), -\partial_xz(t, 1)) \in \Sigma + d(t) \\
t \in \mathbb{R}_+ \\
\Sigma \subset \mathbb{R}^2
\end{cases}
\]

\(d : \mathbb{R}_+ \rightarrow \mathbb{R}^2\): disturbance

Definition

The system is input-to-state stable (ISS) with respect to \(X_p\) and a functional space \(Z\) for the disturbance if there exist \(\beta \in \mathcal{KL}\) and \(\gamma \in \mathcal{K}\) s.t., for every solution and every disturbance,

\[
\|z(t)\|_{X_p} \leq \beta(\|z(0)\|_{X_p}, t) + \gamma(\|d\|_Z)
\]

\(\mathcal{K}\) function \(x \mapsto \gamma(x)\): continuous, increasing, \(\gamma(0) = 0\)
Input-to-state stability

Theorem ([Chitour, Marx, Mazanti])

1. If one of the following conditions hold:
 - $p < +\infty$ and $\sum_{n=0}^{\infty} |d(\cdot + 2n + 1)| \in L^p$
 - $d(t) \to 0$ as $t \to +\infty$ and Σ is bounded away from the horizontal and vertical axes

 Then
 \[
 \lim_{t \to +\infty} \|z(t)\|_{X^p} = 0
 \]

2. If Σ satisfies a sector condition at infinity, then the wave equation is ISS in X^p with respect to disturbances in L^p.
Asymptotic behavior of one-dimensional wave equations with set-valued boundary damping

Guilherme Mazanti