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The most simple least-squares problem

A naïve problem

Given xd ∈ R2
, find

x̄ = arg min
x∈R2

1

2

∥x− xd∥22.

Of course the solution is x̄ = xd
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Introducing constraints

A differentiable constraint ∥x∥2
2
≤ 1

Given xd ∈ R2
, find

x̄ = arg min
∥x∥2

2
≤1

1

2

∥x− xd∥22.

It is quite typical that the solution has some “small” component. In this case

x̄2 = −0.2 ̸= 0.

In practice, this “small” components, can be undesirable.
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Bound constraints

Bound constraints. α ≤ xi ≤ β

Given xd ∈ R2
, find

x̄ = arg min
α≤xi≤β

1

2

∥x− xd∥22.

Bound constraints do not help to get rid of “nonzero” components.
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Looking for sparsity: ℓ1 regularization.

ℓ1 regularization

Given xd ∈ R2
and ω > 0, find

x̄ = arg min
x∈R2

1

2

∥x− xd∥22 + ω∥x∥1.

“Tune” ω to get zero components.
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The approach of this talk: ℓ1 constraints

A non-differentiable constraint: ∥x∥1 ≤ 1.

Given xd ∈ R2
, find

x̄ = arg min
∥x∥1≤1

1

2

∥x− xd∥22.

For data in the “green zone”, the solution will have a “zero”component.
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Model problem. Parabolic equation.

(P) min
u∈Uad∩L∞(Q)

J(u) = ∥yu − yd∥2L2(Q) +
κ

2

∥u∥2L2(Q)

∂tyu + Ayu + f (yu) = u in Q, yu = 0 on Σ, yu(0) = y0 in Ω

Uad = {u ∈ L∞(0, T ; L1(Ω)) : ∥u(t)∥L1(Ω) ≤ γ for a.a. t ∈ (0, T )}

κ > 0,

Ω ⊂ Rd
, d = 1, 2, 3 bounded domain with boundary Γ, Lipschitz for d ≥ 2,

T > 0, Q = Ω× (0, T ), Σ = Γ× (0, T )

yd ∈ Lp(0, T ; Lq(Ω)), for some p, q good enough,

A an elliptic operator, f of class C2

such that f ′(y) ≥ Cf ∈ R for all y ∈ R.
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Typical solution of an unconstrained problem (1D)
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Typical solution of a problem (1D) with differentiable

constraint
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Typical solution of a problem (1D) with sparsity promoting

term
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Typical solution of a problem (1D) with directional

sparsity promoting term
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Solution with the constraint ∥u(t)∥1 ≤ 3 for all t (1D)
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Solution with the constraint ∥u(t)∥1 ≤ 0.5 for all t (1D)
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Some comments and difficulties

Allow strong and interesting non-linearities such as ey , or y2n+1
, or

(y − a)(y − b)(y − c).

Problem of existence of solution:

- On one hand, J is not coercive in L∞(Q)
- But on the other, u ∈ L2(Q) is not an appropriate datum for the nonlinear

state equation.

- A new truncation argument is used.

The constraint is not differentiable

- It will induce sparse solutions! supp(u(t)) will be “small” when

∥u(t)∥L1(Ω) = γ

E. Casas and K. Kunisch (2021). “Optimal control of semilinear parabolic equations with non-smooth

pointwise-integral control constraints in time-space”. In: Appl. Math. Optim., To appear
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About the discretization

Discretization in time: discontinuous Galerkin (dG0, implicit Euler).

Continuous Galerkin (cG1, Crank-Nicholson) also possible.

Discretization in space: finite elements.

State and adjoint state, Lagrange P1 element (continuous piecewise linear

functions)

Control:

- Piecewise constant functions works ok.

- For Lagrange P1 element sparsity properties may be lost‼

- We can solve this issue using the trapezoid rule to approximate ∥u(t)∥L1(Ω)

and ∥u(t)∥2L2(Ω).

E. Casas, K. Kunisch, and M. Mateos (2021). “Error estimates for the numerical approximation of optimal

control problems with non-smooth pointwise-integral control constraints”. In: Submitted
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A more simple problem (drop time dependence)

Problem (E)

min
u∈Uad∩L∞(Ω)

J(u) = ∥yu − yd∥2L2(Ω) +
κ

2

∥u∥2L2(Ω)

Ayu + f (yu) = u in Ω, yu = 0 on Γ

Uad = {u ∈ L1(Ω) : ∥u∥L1(Ω) ≤ γ}

yd ∈ L2(Ω), f of class C2

, f ′(y) ≥ 0 for all y ∈ R.

Ay(x) = −
n∑

i,j=1

∂xi (aij∂xjy(x)) + a0(x)y(x),

where a0(x) ∈ L∞(Ω), a0(x) ≥ 0, ai,j ∈ C0,1(Ω̄) and there exists Λ > 0 s.t.

n∑
i,j=1

aij(x) ξiξj ≥ Λ|ξ|2 for a.a. x ∈ Ω, ∀ξ ∈ Rn
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Study of the state equation.

Theorem

For every u ∈ L2(Ω) there exists a unique yu ∈ Y := H1

0
(Ω) ∩ C0,ν(Ω̄), for some

ν ∈ (0, 1), solution of the state equation.

G : L2(Ω) → Y, G(u) = yu is of class C2.

For all u, v ∈ L2(Ω), G′(u)v = zv , where zv ∈ Y is the unique solution of

Az + f ′(yu)z = v in Ω, z = 0 on Γ.

Parabolic problem

For the parabolic problem, we may lose differentiability for data u, v ∈ L2(Q) and a general f .

For conditions on f for the existence of solution, see e.g., H. Amann and P. Quittner (2006). “Optimal

control problems governed by semilinear parabolic equations with low regularity data”. In: Adv.

Differential Equations 11.1, pp. 1–33.
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Differentiability properties of the functional.

J : L2(Ω) → R is of class C2

J′(u)v =

∫
Ω

(φu + κu)vdx

J′′(u)v2 =
∫
Ω

[(1− f ′′(yu)φu)z2v + kv2]dx

where the adjoint state φu ∈ Y is the unique solution of

A∗φ+ f ′(yu)φ = yu − yd in Ω, φ = 0 on Γ.

Denote j(u) = ∥u∥L1(Ω). j is convex and Lispchitz.

λ ∈ ∂j(u) ⇐⇒ λ(x)

 = 1 if u(x) > 0

∈ [−1, 1] if u(x) = 0

= −1 if u(x) < 0
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Existence of a global solution of (E)

The elliptic case is easier than the parabolic case. No need to truncate.

(E2) min
u∈Uad∩L2(Ω)

J(u)

(E2) has a solution ū (direct method of the calculus of variations).

Suppose ū is a local solution of (E2). Since Uad ∩ L2(Ω) is convex, then

J′(ū)(u − ū) =
∫
Ω

(φ̄+ κū)(u − ū)dx ≥ 0 ∀u ∈ Uad ∩ L2(Ω),

where φ̄ = φū. Denote µ̄ = −φ̄− κū and write∫
Ω

µ̄(u − ū)dx ≤ 0 ∀u ∈ Uad ∩ L2(Ω).

Test this inequality with u(x) = sign(µ̄(x))|ū(x)| to deduce µ̄(x) and ū(x)
have the same sign.

So for a.a x ∈ Ω, we have

κ|ū(x)|+ |µ̄(x)| = |κū(x) + µ̄(x)| = |φ̄(x)| ≤ ∥φ̄∥L∞(Ω)

And both ū and µ̄ belong to L∞(Ω).
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First order optimality conditions

Theorem

Suppose ū ∈ Uad ∩ L∞(Ω) is a local solution of (E) (local in the sense of L2(Ω)).
Then, there exist ȳ, φ̄ ∈ Y and µ̄ ∈ L∞(Ω) such that

Aȳ + f (ȳ) = ū in Ω, ȳ = 0 on Γ

A∗φ̄+ f ′(ȳ)φ̄ = ȳ − yd in Ω, φ̄ = 0 on Γ.

φ̄+ κū + µ̄ = 0∫
Ω

µ̄(u − ū)dx ≤ 0 ∀u ∈ Uad
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Proof

Uad ∩ L∞(Ω) = {u ∈ L∞(Ω) : j(u) := ∥u∥L1(Ω) ≤ γ} is convex, so

J′(ū)(u − ū) ≥ 0 ∀u ∈ Uad ∩ L∞(Ω).

And using the expression for J′(ū), we can write∫
Ω

(φ̄+ κū)(u − ū) ≥ 0 ∀u ∈ Uad ∩ L∞(Ω). (*)

Using that φ̄+ κū ∈ L∞(Ω), we have∫
Ω

(φ̄+ κū)(u − ū) ≥ 0 ∀u ∈ Uad

Proof: Given u ∈ Uad, test (*) for uk = proj[−k,k](u(x)) ∈ Uad ∩ L∞(Ω) and take

limits as k → +∞.

Define µ̄ = −φ̄− κū
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Some consequences of the first order conditions

1 ū = ProjUad

(
− 1

κ φ̄
)
(projection in the sense of L2(Ω)).

2 µ̄(x)ū(x) = |µ̄(x)ū(x)|
3 j(ū) < γ ⇒ µ̄ ≡ 0

4 Name ω̄ = ∥µ̄∥L∞(Ω). We have a first sparsity property:
If j(ū) = γ and µ̄ ̸≡ 0, then suppū ⊂ {x ∈ Ω : |µ̄(x)| = ω̄}.

5 −κū(x) = (φ̄(x)− ω̄)+ + (φ̄(x) + ω̄)− (soft thresholding)

6 5⃝, together with φ̄ ∈ Y = H1

0
(Ω) ∩ C0,ν(Ω̄), implies ū, µ̄ ∈ Y .

7 5⃝ also implies a second sparsity property: ū(x) = 0 ⇐⇒ |φ̄(x)| ≤ ω̄.
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Getting ready for the optimization algorithm

First order optimality conditions may suggest what kind of optimization algorithm

we can use

ū = ProjUad

(
− 1

κ φ̄
)
, so a fixed-point algorithm could be used as a last resource!

∇J(u) = φu + κu, so we can use a projected gradient algorithm.

Barzilai-Borwein strategy for the choice of the step size results in an incredibly

good performance, but ...

The convergence is linear.

The computation of the gradient requires the solve of the non-linear state
equation.

At each step, we have to project onto the L1(Ω) ball
For the parabolic, we have to do these projections for every instant of time.

Our problem maybe/is non convex.

A question arises: Could we use semismooth Newton?

Superlinear convergence.

Only linear PDEs must be solved.

Well known globalization and continuation techniques.

Successful for problems with bound constraints or problems with L1(Ω)
regularization.
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More consequences of the first order conditions

Lemma∫
Ω

µ̄(u − ū)dx ≤ 0 ∀u ∈ Uad ⇐⇒ µ̄ ∈ ω̄∂j(ū), where ω̄ = ∥µ̄∥L∞(Ω)

Connection with L1(Ω) penalization for some ω > 0

(Eω) min
u∈L∞(Ω)

J(u) + ω∥u∥L1(Ω)

If u∗ ∈ L∞(Ω) is a local solution of (Eω), then there exist y∗ = yū ∈ Y ,
φ∗ = φū ∈ Y and λ∗ ∈ ∂j(u∗) such that

φ∗ + κu∗ + ωλ∗ = 0.

Remark

The solution ū of (E), satisfies first order necessary conditions of problem (Eω̄).

The difficulty is that we do not know ω̄ beforehand.
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Towards semismooth Newton

Now it is standard to write the subdifferential condition using max and min

ū(x)−max{0, ū(x) + C(µ̄(x)− ω̄)} −min{0, ū(x) + C(µ̄(x) + ω̄)} = 0

for a.a. x ∈ Ω and all C > 0

On the other hand, j(ū) < γ ⇒ µ̄ ≡ 0 implies

ω̄ ≥ 0, j(ū)− γ ≤ 0, ω̄ · (j(ū)− γ) = 0

This complementarity system can be written as

ω̄ −max{0, ω̄ + D · (j(ū)− γ)} = 0 ∀D > 0
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First order optimality conditions revisited

Suppose ū ∈ Uad ∩ L∞(Ω) is a local solution of (E). Then, there exist ȳ, φ̄ ∈ Y ,
µ̄ ∈ L∞(Ω) and ω̄ ∈ R such that

Aȳ + f (ȳ) = ū in Ω, ȳ = 0 on Γ

A∗φ̄+ f ′(ȳ)φ̄ = ȳ − yd in Ω, φ̄ = 0 on Γ.

φ̄+ κū + µ̄ = 0

ū −max{0, ū + C · (µ̄− ω̄)} −min{0, ū + C · (µ̄+ ω̄)} = 0 for a.a. x ∈ Ω, ∀C > 0

ω̄ −max{0, ω̄ + D · (j(ū)− γ)} = 0 ∀D > 0

We can try semismooth Newton on this system.
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Second order conditions

Cū =

{
v ∈ L2(Ω) : J′(ū)v = 0 and j′(ū; v)

{
= 0 if j(ū) = γ and µ̄ ̸≡ 0

≤ 0 if j(ū) = γ and µ̄ ≡ 0

}

Necessary conditions: if ū is a local solution of (E), then

J′′(ū)v2 ≥ 0 ∀v ∈ Cū.

Sufficient conditions: if ū satisfies first order optimality conditions and

J′′(ū)v2 > 0 ∀v ∈ Cū \ {0}

then ū is a local quadratic solution in the sense of L2(Ω).

Why do we work so hard to get second order conditions

About the importance of second order conditions, see

E. Casas and F. Tröltzsch (2015). “Second order optimality conditions and their role in PDE control”. In:

Jahresber. Dtsch. Math.-Ver. 117.1, pp. 3–44
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Further uses of second order conditions

For τ > 0 define the extended cone.

Cτ
ū =

{
v ∈ L2(Ω) : |J′(ū)v| ≤ τ∥v∥L2(Ω) and{

|j′(ū; v)| ≤ τ∥v∥L2(Ω) if j(ū) = γ and µ̄ ̸≡ 0

j′(ū; v) ≤ τ∥v∥L2(Ω) if j(ū) = γ and µ̄ ≡ 0

}

If ū satisfies first order optimality conditions and J′′(ū)v2 > 0 ∀v ∈ Cū \ {0},
then there exist ε > 0 and τ > 0 such that

J′′(u)v2 ≥ τ∥v∥2L2(Ω) ∀u ∈ BL2(Ω)(ū, ε), ∀v ∈ Cτ
ū

This will be very useful to obtain error estimates and convergence of

Newton-like methods.
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Finite element discretization

Suppose Ω is convex and polygonal or polyhedral.

Consider a quasi-uniform family of triangulations {Th}h>0

Define

a(y, η) =
∫
Ω

 n∑
i,j=1

ai,j∂xiy∂xjη + a0yη

 dx ∀y, η ∈ H1(Ω),

Yh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th and yh = 0 on Γ},

Uh = {uh ∈ C(Ω̄) : uh|T ∈ P1(T ) ∀T ∈ Th}.

Denote {ei}Ni=1
, N = N(h), the nodal basis associated to the nodes {xi}Ni=1

of

the triangulation and suppose {xi}NI
i=1

, NI = NI(h) are the interior nodes.

yh(x) =
NI∑
i=1

yiei(x), uh(x) =
N∑
i=1

uiei(x)

y = (y1, . . . , yNI , 0, . . . , 0)
T , u = (u1, . . . , uN)T
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State discretization

For every u ∈ L2(Ω) there exists a unique yh(u) ∈ Yh such that

a(yh, ηh) +
∫
Ω

f (yh)ηhdx =

∫
Ω

uηhdx ∀ηh ∈ Yh.

Since Ω is convex, yu ∈ Y2 := Y ∩ H2(Ω) for every control u ∈ L2(Ω), and

∥yu − yh(u)∥L2(Ω) ≤ C(∥u∥L2(Ω) + 1)h2.

Parabolic problem

For the parabolic problem, we also need for later use an error estimate in L∞(Q).

Gh : Uh → Yh, Gh(uh) = yh(uh) is of class C2
. For all uh, vh ∈ Uh,

zh(vh) = G′(uh)vh ∈ Yh is the unique solution of the linear equation

a(zh, ηh) +
∫
Ω

f ′(yh(uh))zhηhdx =

∫
Ω

vhηhdx ∀ηh ∈ Yh
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Control discretization

Piecewise constant discretization can be done, but let us focus on continuous
piecewise linear controls.
Notice that although we could try to use

∥uh∥L1(Ω) =

∫
Ω

∣∣∣∣∣
N∑
i=1

uiei

∣∣∣∣∣ dx
∥uh∥2L2(Ω) =

N∑
i,j=1

uiuj

∫
Ω

eiejdx = uTMu,

whereM is the mass matrix of the fem basis, u = (u1, . . . , uN)T ,
the solutions of the discrete problem

min
uh∈Uad∩Uh

1

2

∥yh(u)− yd∥2L2(Ω) +
κ

2

∥uh∥2L2(Ω)

need not satisfy the same sparsity properties as the solutions of the

continuous problem.

And also, the numerical computation of ∥uh∥L1(Ω) can be computationally

expensive.
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The “correct” way to discretize the control

Instead, use the diagonal lump matrix L, where ℓii =
∫
Ω
eidx and define

(uh, vh)h = uTLu =
N∑
i=1

uiviℓii, ∥uh∥2h = (uh, uh)h, jh(uh) =
N∑
i=1

|ui|ℓii

These are approximations using the trapezoid rule. Let Ih be the nodal interpolator:

∥uh∥2h =
∫
Ω

Ih(u2h)dx, jh(uh) =
∫
Ω

Ih|uh|dx

We consider problem

(Eh) min
uh∈Uh,ad

Jh(uh) :=
1

2

∥yh(uh)− yd∥2L2(Ω) +
κ

2

∥uh∥2h

where

Uh,ad = {uh ∈ Uh : jh(uh) ≤ γ}

Notice that j(uh) ≤ jh(uh), and hence Uh,ad ⊂ Uad.
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Existence of solution and differentiability properties

∥uh∥h is an equivalent norm in Uh to ∥uh∥L2(Ω), with equivalence constants

independent of h.
So Jh is coercive. Since Uh,ad is closed, there exists a solution ūh ∈ Uh,ad.

Jh : Uh → R is of class C2
. For all uh, vh ∈ Uh

J′h(uh)vh =
∫
Ω

φh(uh)vhdx + κ(uh, vh)h,

where φh(uh) ∈ Yh is the unique solution of the linear equation

a(ηh, φh) +

∫
Ω

f ′(yh(uh))φhηhdx =

∫
Ω

(yh(uh)− yd)ηhdx ∀ηh ∈ Yh.

jh : Uh → R is convex and Lipschitz. λh ∈ ∂jh(uh), the convex subdifferential of
uh w.r.t. the scalar product (·, ·)h, iff

λi

 = 1 if ui > 0

∈ [−1, 1] if ui = 0

= −1 if ui < 0
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Dealing with the discrete adjoint state

The expression J′h(uh)vh =
∫
Ω
φh(uh)vhdx + κ(uh, vh)h mixes two different

scalar products, and can be difficult to handle.

For φ ∈ L1(Ω) we use Carstensen’s quasi-interpolation operator

Πh : L1(Ω) → Uh by

Πhφ =
N∑
i=1

∫
Ω
φeidx∫

Ω
eidx

ei

Among many other properties, we have that∫
Ω

φvhdx = (Πhφ, vh)h ∀φ ∈ L1(Ω) ∀vh ∈ Uh.

Given uh ∈ Uh, I will name ϕh(uh) = Πhφh(uh) ∈ Uh.

We have ϕ = L−1Mφ, i.e., ϕi =
∫
Ω
φh(uh)eidx∫
Ω
eidx

, i = 1, . . . ,N .

Now

J′h(uh)vh = (ϕh(uh) + κuh, vh)h =
N∑
i=1

(ϕi + κui)viℓii
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First order optimality conditions

Let ūh ∈ Uh,ad be a local solution of (Ph). Then there exist ȳh, φ̄h ∈ Yh and µ̄h ∈ Uh

such that

a(ȳh, ηh) +
∫
Ω

f (ȳh)ηhdx =

∫
Ω

ūhηhdx ∀ηh ∈ Yh,

a(ηh, φ̄h) +

∫
Ω

f ′(ȳh)φ̄hηhdx =

∫
Ω

(ȳh − yd)ηhdx ∀ηh ∈ Yh

ϕ̄i + κūi + µ̄i = 0 ∀i = 1, . . . ,N

(µ̄h, uh − ūh)h ≤ 0 ∀uh ∈ Uh,ad

where

ϕ̄i =

∫
Ω
φ̄heidx∫
Ω
eidx

, i = 1, . . . ,N
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Sparsity properties of the discrete solution

For a fixed index i ∈ {1, . . . ,N}, using test controls uh ∈ Uh,ad satisfying uj = ūj if
i ̸= j, we can deduce element-wise analogous properties to those of local solutions

of (P):
1 For every i = 1, . . . ,N , ūi and µ̄i have the same sign.

2 jh(ūh) < γ ⇒ µ̄h ≡ 0.

3 Name ω̄h = ∥µ̄h∥L∞(Ω) = ∥µ̄∥∞ = max{|µ̄i|, i = 1, . . . ,N}.
If jh(ūh) = γ and µ̄h ̸≡ 0, then ūi ̸= 0 ⇒ |µ̄i| = ω̄h.

4 −κūi = (ϕ̄i − ω̄h)
+ + (ϕ̄i + ω̄h)

−
(Soft thresholding)

5 5⃝ implies a second sparsity property: ūi = 0 ⇐⇒ |ϕ̄i| ≤ ω̄h.

6 µ̄h ∈ ω̄h∂jh(ūh)
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Convergence

Theorem

For every h > 0, let ūh ∈ Uh,ad be a local solution of (Eh). Then {ūh}h>0 is bounded in
L∞(Ω) and if a sequence ūh

∗
⇀ ū in L∞(Ω) as h → 0, then ū is a local solution of (E)

in the sense of L2(Ω),

lim
h→0

∥ūh − ū∥L2(Ω) = 0, lim
h→0

Jh(ūh) = J(ū) (*)

Theorem

Let ū ∈ Uad be a strict local minimum of (E) in the sense of L2(Ω). Then there exist
h0 > 0 and ε > 0 and a sequence {ūh}h<h0 of local minima of (Eh) such that (*) holds
and

Jh(ūh) = min{Jh(uh) : uh ∈ Uh,ad ∩ B̄L2(Ω)(ū, ε)}.

Parabolic problem

Same results for the parabolic problem, but proofs require more steps and error estimates in L∞(Q) for

the state equation.
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Error estimates

Theorem

Let ū be a local solution of (E) in the L2(Ω) sense such that J′′(ū)v2 > 0 for all
v ∈ Cū \ {0}, and let {ūh} be a sequence of local solutions of problems (Eh) such that
ūh → ū in L2(Ω). Then, there exist h0 > 0 and C > 0 such that

∥ūh − ū∥L2(Ω) ≤ Ch ∀h < h0.

Remark: In general, we only know that ū ∈ H1

0
(Ω), so ∥ū − Πhū∥L2(Ω) ≤ Ch,

and in this sense, the above estimate can be seen as “optimal”.

Parabolic problem

For the parabolic problem, we obtain

∥ūh − ū∥L2(Q) ≤ C(h+ τ) ∀h < h0, ∀τ < τ0,

where τ is the time step size.
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Projected gradient method

Algorithm 1: Projected gradient with Barzilai-Borwein stepsize

Initialize k = 0, u0, s0, g0 = ∇J(u0)
while not convergence do

ũk+1 = uk − skgk // Move in a descent direction
uk+1 = ProjUad

(ũk+1) // Project onto the L1 ball
gk+1 = ∇J(uk+1) // Compute the new gradient
δu = uk+1 − uk , δg = gk+1 − gk // Compute new stepsize
Compute either sk+1 =

(δg ,δu)
(δg ,δg)

or sk+1 =
(δu,δu)
(δu,δg)

k := k + 1

end

J. Barzilai and J. M. Borwein (1988). “Two-point step size gradient methods”. In: IMA J. Numer. Anal. 8.1,

pp. 141–148

L. Condat (2016). “Fast projection onto the simplex and the l1 ball”. In: Math. Program. 158.1-2, Ser. A,

pp. 575–585

A. Ang (n.d.). Notes. url: https://angms.science/notes.html

48 / 62

https://angms.science/notes.html


Comments

The computation of the gradient requires solving the nonlinear state equation
and the linear adjoint state equation.

In finite dimension ∇J(uh) = ϕh(uh) + κuh, and (·, ·) = (·, ·)h.
The stepsize for steepest descent is sk = argmin

s
J(uk − sgk). Barzilai-Borwein

strategies satisfy respectively for each of the choices

sk+1 = argmin
s

∥δu − sδg∥2h or sk+1 = argmin
s

∥sδu − δg∥2h

The projection onto the L1-ball is computationally expensive.

Parabolic problem

For the parabolic problem, we have to project Nτ times at each step, where Nτ is the number of time

steps of the discretization.
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Semismooth Newton method (ongoing work)

X∞ = Y2 × Y2 × L∞(Ω)× L∞(Ω)× R, X 2 = L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω)× R.
For fixed positive C and D, define F : X∞ → X 2

as

F


y
φ
u
µ
ω

 =


Ay + f (y)− u

A∗φ+ f ′(y)φ− y + yd
φ+ κu + µ

u −max{0, u + C(µ− ω)} −min{0, u + C(µ+ ω)}
ω −max{0, ω + D(j(u)− γ)}


For given x = (y, φ, u, µ, ω) ∈ X∞

, we define the active and inactive sets as

A+ ={x ∈ Ω : u(x) + C(µ(x)− ω) > 0},
A− ={x ∈ Ω : u(x) + C(µ(x) + ω) < 0},
A =A+ ∪ A−,

I =Ω \ A.
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Slant derivative of F

There exists ρ > 0 such that the function F is slantly differentiable in B(x, ρ).
Moreover, for every x ∈ X∞

, define G(x) ∈ L(X∞,X 2) as

G


y
φ
u
µ
ω




δy
δφ
δu
δµ
δω

 =


Aδy + f ′(y)δy − δu

A∗δφ + f ′(y)δφ − (1− f ′′(y)φ)δy
δφ + κδu + δµ

δuχI − CδµχA + Cδω(χA+ − χA−){
δω if ω + D(j(u)− γ) ≤ 0

−D
∫
Ω
λδudx if ω + D(j(u)− γ) > 0


where λ ∈ ∂j(u). Then G is a slanting function for F .
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Semismooth Newton’s method

Algorithm 2: Semismooth Newton’s method

Initialize k = 0, x0 = (y0, φ0, u0, µ0, ω0)
while not convergence do

Compute the active and inactive sets A+
k , A

−
k , Ak , Ik

if ωk + D · (j(uk)− γ) > 0 then
Choose λk ∈ ∂j(uk)

end
Solve G(xk)δx = −F (xk)
Choose a stepsize sk ≤ 1

xk+1 = xk + skδx
end
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Solving the linear system G(xk)δx = −F (xk)

Aδy + f ′(y)δy = −Ay − f (y) + u + δu in Ω, δy = 0 on Γ (1)

A∗δφ + f ′(y)δφ = δy(1− f ′′(y)φ)− A∗φ− f ′(y)φ+ y − yd in Ω, δIφ = 0 on Γ (2)

δφ + κδu + δµ = −φ− κu − µ (3)

δuχI−CδµχA+Cδω(χA+−χA−) = −u+max{0, u+C(µ−ω)}+min{0, u+C(µ+ω)}
(4)

δω = −ω if ω + D(j(u)− γ) ≤ 0 (51)

−
∫
Ω

λδudx = j(u)− γ if ω + D(j(u)− γ) > 0 (52)
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Solving the linear system G(xk)δx = −F (xk)

Notice that δuχI = −uχI, so we split δu = −uχI + δuχA.

Using this we split δy = δIy + δAy and δφ = δIφ + δAφ
- Fixed part:

AδIy + f ′(y)δIy =− Ay − f (y) + u − uχI in Ω, δIy = 0 on Γ,

A∗δIφ + f ′(y)δIφ =δIy(1− f ′′(y)φ)− A∗φ− f ′(y)φ+ y − yd in Ω, δIφ = 0 on Γ,

- Part linear in δuχA

AδAy + f ′(y)δAy =δuχA in Ω, δAy = 0 on Γ

A∗δAφ + f ′(y)δAφ =δAy (1− f ′′(y)φ) in Ω, δAφ = 0 on Γ

We can use the fourth equation to deduce δµ = −µ+ (χA+ − χA−)(ω + δω) in
A.
We will use the third equation to compute δµ = −δφ − φ− µ in I once δφ has

been computed.
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Case 1

If ω+D · (j(u)− γ) ≤ 0, then δω = −ω. Using (4) we have δµ = −µ in A. The third
equation can be written now as

δAφ + κδu = −δIφ − φ− κu in A

This equation, together with the two linear PDEs for δAy and δAφ are the optimality

system of the unconstrained linear quadratic control problem

min
δu∈L2(A)

1

2

∫
Ω

(1− f ′′(y)φ)δAy
2

dx +
κ

2

∫
A
δ2udx −

∫
A
δu

(
− δIφ − φ− κu

)
dx

AδAy + f ′(y)δAy = δuχA in Ω, δAy = 0 on Γ

Use Conjugate Gradient to solve AδAu = b, where AδAu = (δAφ + κδAu )χA and

b = (−δIφ − φ− κu)χA.
Compare with §14 in E. Casas and M. Mateos (2017). “Optimal control of partial differential equations”.

In: Comp. Math., Num. An. and Apps. Vol. 13. SEMA SIMAI Springer Ser. Pp. 3–59
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Case 2

Suppose now that ω + D · (j(u)− γ) > 0. Now equation (3) reads like

δAφ + κδu = −δIφ − φ− κu − (χA+ − χA−)(ω + δω) in A

For the simplest choice of λ ∈ ∂j(u), eq. (5) is∫
Ω

(χA+ − χA−)δudx = γ − j(u)

These two equations, together with the two linear PDEs for δAy and δAφ are the

optimality system of the linearly constrained linear quadratic control
problem

min
δu∈L2(A)

1

2

∫
Ω

(1−f ′′(y)φ)δAy
2

dx+
κ

2

∫
A
δ2udx−

∫
A
δu

(
−δIφ−φ−κu−(χA+−χA−)ω

)
dx

s.t.

∫
A
(χA+ − χA−)δudx = γ − j(u)

Here, δω plays the role of the Lagrange multiplier related to the linear constraint.
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Numerical comparison of the optimization methods.

Consider the problem (E) with data Ω = (0, 1)n, n = 1, 2, 3, A = −∆, κ = 1,

yd(x) =
∏n

i=1
sin(2πxi) and f (y) = ey and γ = 0.005 · 2−n

.

We can solve the problem with both methods.

Projected gradient with Barzilai-Borwein is faster in almost all cases for this

example.

But in dimension 3 with h = 1/26 (274 625 nodes) Newton’s method is faster.

The main reason is that in this case, the computation of yu is very expensive.

Parabolic problem

Ongoing work. Since in this case the solution of the nonlinear equation is much

more “expensive” in the parabolic case, we expect Newton’s method to be faster.
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Observed error estimates (Parabolic problem)

n = 1, Ω = (0, 1), A = −∆, f ≡ 0 (linear equation) y0 = 0, T = 1, κ = 10
−4

and

yd(x, t) = exp(−20[(x − 0.2)2 + (t − 0.2)2]) + exp(−20[(x − 0.7)2 + (t − 0.9)2])

Data from Ed. Casas, R. Herzog, and G. Wachsmuth (2017). “Analysis of spatio-temporally sparse

optimal control problems of semilinear parabolic equations”. In: ESAIM Control Optim. Calc. Var. 23.1,

pp. 263–295

hi = τi ∥ūσI,I − ūσi,i∥L2(Q) EOC
2
−8

1.76E− 1 −
2
−9

8.93E− 2 0.98
2
−10

4.49E− 2 0.99

Table: Experimental order of convergence. Simultaneous refinement in space and time.

hi ∥ūσI,I − ūσi,I∥L2(Q) EOC
2
−8

1.10E− 02 −
2
−9

3.87E− 03 1.51
2
−10

1.34E− 03 1.53

τi ūσI,I − ūσI,i EOC
2
−8

1.76E− 1 −
2
−9

8.93E− 2 0.98
2
−10

4.49E− 2 0.99

Table: Left, refinement only in space. Right, refinement only in time.
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Sparsity properties (n = 2, parabolic problem).
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