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@ Introduction
@ Sparse solutions of naive least squares problems
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The most simple least-squares problem

A naive problem
Given x4 € R?, find

_ 1 )
X = arg min o [|x — x4|>-

@ Of course the solution is X = x4
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A differentiable constraint ||x||? < 1

Given x4 € R?, find

X in Llx— xq2
X = ar min —|((xXx — X .
& xiliz: 2 qi2

min } 2 — 4] s 4. [l2]3 < *

o It is quite typical that the solution has some “small” component. In this case
% = —0.2 # 0.
@ In practice, this “small” components, can be undesirable.
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Bound constraints

Bound constraints. a < x; < (8

Given x4 € R?, find

a<x<p 2
15 ~
} e ———
’ ~
/ -
7 s o=
/ / v N
1 i 2 3 a4l
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i:;‘(l.O,Ll.Oj 4 )
1 \ \ \ /
15 \ \ S 4
\ \ \ b

@ Bound constraints do not help to get rid of “nonzero” components.
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Looking for sparsity: ¢! regularization.

(' regularization

Given x4 € R? and w > 0, find

p— . 1 2
% = arg min > [lx — xall3 + wx].

min ||z — aall3 + wllel min ||z — aal3 + wllelly

@ “Tune” w to get zero components.

7/62



The approach of this talk: ¢! constraints

A non-differentiable constraint: ||x||; < 1.
Given x4 € R?, find

X in Llx— xq2
X = ar min —|((xX — X .
& ahg 2 qi2

min 3z — wgl3 st [z <o min e — 2,13 st el <y

o For data in the “green zone”, the solution will have a “zero”component.
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@ Introduction

@ The parabolic optimal control problem
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Model problem. Parabolic equation.

. _ 2 K2
(P) ueuaﬁ'Pw(Q)f(u) = [lyu — ydlliz(q + §||U||L2(Q)

Otyu +Ayu + f(yu) =uin Q, y, =0o0n X, y,(0) = yp in Q

Ua = {u € L°(0, T; L'(Q)) : |u(t)|| @) < v foraa. te(0,T)}

K >0,
Q c RY d =1,2,3bounded domain with boundary I, Lipschitz for d > 2,
T>0Q=0x%x(0,T),x=Tx(0,T)

ya € LP(0, T; L9(2)), for some p, g good enough,
A an elliptic operator, f of class C* such that f'(y) > C; € Rforall y € R.
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Typical solution of an unconstrained problem (1D)

11/62



Typical solution of a problem (1D) with differentiable

constraint

lull 2@ < 5.0
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Typical solution of a problem (1D) with sparsity promoting

term

Regularization: min J(u) + w||ul|1 @)
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Typical solution of a problem (1D) with directional

sparsity promoting term

Regularization: min J(u) + w||ul 11 or2(0,7))
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Solution with the constraint ||u(t)||; < 3 for all t (1D)
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Solution with the constraint ||u(t)||; < 0.5 for all £ (1D)
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Some comments and difficulties

@ Allow strong and interesting non-linearities such as e”, or y2™!

(y —a)(y = b)(y — ).
@ Problem of existence of solution:
- On one hand, J is not coercive in L°(Q)
- But on the other, u € L?(Q) is not an appropriate datum for the nonlinear
state equation.
- A new truncation argument is used.

, or

@ The constraint is not differentiable
- It will induce sparse solutions! supp(u(t)) will be “small” when
[u(O)l| @) =
E. Casas and K. Kunisch (2021). “Optimal control of semilinear parabolic equations with non-smooth

pointwise-integral control constraints in time-space”. In: Appl. Math. Optim., To appear
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About the discretization

o Discretization in time: discontinuous Galerkin (dGO0, implicit Euler).

Continuous Galerkin (cG1, Crank-Nicholson) also possible.

@ Discretization in space: finite elements.

o State and adjoint state, Lagrange P1 element (continuous piecewise linear
functions)

o Control:
- Piecewise constant functions works ok.

- For Lagrange P1 element sparsity properties may be lost!!
- We can solve this issue using the trapezoid rule to approximate || u(t)||,1(q)

2
and [|u(t)|7:q)-
E. Casas, K. Kunisch, and M. Mateos (2021). “Error estimates for the numerical approximation of optimal

control problems with non-smooth pointwise-integral control constraints”. In: Submitted
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© A problem governed by an elliptic equation
@ Statement and first properties
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A more simple problem (drop time dependence)

Problem (E)

. . 2 AT
e ) = = il + Sl

Avu+ f(yu) =uin, y,=0o0nT

Ung = {u € LY(Q) ¢ lullie) < 7}

ya € L*(Q), f of class C*, f'(y) > 0 forall y € R.

Ay(x) = Zax,(auax,Y(X)) + a(x)y(x),

ij=1
where a(x) € L°(Q), a(x) > 0, a;; € C*'(Q) and there exists A > 0 s.t.

n

Z aj(x) && > NEJ foraa. x € Q, VE € R”

ij=1
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dy of the state equation.

o Forevery u € L%(Q) there exists a unique y, € Y := H}(Q) N C**(Q), for some
v € (0, 1), solution of the state equation.

e G:L*(Q) — Y, G(u) =y, is of class C*.
@ Forallu,v e [*(Q), G'(u)v = z,, where z, € Y is the unique solution of

Az+ f'(y))z=vinQ, z=0onT.

Parabolic problem

For the parabolic problem, we may lose differentiability for data u, v € L?(Q) and a general f.

For conditions on f for the existence of solution, see e.g., H. Amann and P. Quittner (2006). “Optimal

control problems governed by semilinear parabolic equations with low regularity data”. In: Adv.

Differential Equations 11.1, pp. 1-33.

.
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Differentiability properties of the functional.

e J: L?(Q) — Ris of class C?

J(u)v = /Q(cpu + Ku)vdx

I = [ (0= )z + kol
where the adjoint state ¢, € Y is the unique solution of
A0+ f(yu)p=yu—yainQ, @=00nT.
o Denote j(u) = ||ul[;1(q). j is convex and Lispchitz.
=1 if u(x) >0

A€ djlu) <= Ax){ €[-1,1] ifu(x)=0
=—1 if u(x) <0
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Existence of a global solution of (E)

The elliptic case is easier than the parabolic case. No need to truncate.

(E>) min _ J(u)

u€ UpaNL2(R2)

@ (E?) has a solution @ (direct method of the calculus of variations).
@ Suppose T is a local solution of (E?). Since U,a N L?(2) is convex, then

J(@)u— 1) = /(@ 4+ wi)(u— T)dx > 0 Vu € Up M 2(Q),
Q
where ¢ = 5. Denote ji = —@ — kU and write
/ f(u— t)dx < 0Vu € Uy N L*(Q).
Q

o Test this inequality with u(x) = sign(f(x))|u(x)| to deduce fi(x) and @(x)
have the same sign.
@ Sofora.ax € £, we have

rla(x) + [a(x)| = [ru(x) + ()] = [2()] < ([l @)
And both @ and [i belong to L*>(Q).
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© A problem governed by an elliptic equation

@ Optimality conditions and sparsity properties
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First order optimality conditions

Suppose U € Uyg N L>(Q) is a local solution of (E) (local in the sense of L*(2)).
Then, there exist y, ¢ € Y and i € L*°(Q) such that

Ay+f(y)=1uinQ, y=0o0onT

A+ f(V)p=y—ysinQ, p=0o0nT.
o+rUu+p=0

/[L(u— 0)dx < 0Vu € Uy
Q
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0 U NL®(Q) = {u e L(Q) : j(u) = |lul|1(q) < 7} is convex, so
J(@)(u—1) > 0Vu € Uy N LZ(Q).
And using the expression for J/(T), we can write
/((,5 + kU)(u—1) > 0Vu € Uyg N LZ(Q). ™
Q
o Using that ¢ 4+ ku € L>(Q), we have
/(cﬁ—&—nﬁ)(u— 7) > 0Vu € U
Q
Proof: Given u € Uy, test (*) for ux = proj_, 4(u(x)) € Uaa N L>°(€2) and take

limits as k — +o0.

o Define i = —p — KU

26/62



Some consequences of the first order conditions

Name & = |[|fi]| (). We have a first sparsity property:
=y and i # 0, then suppt C {x € Q: |i(x)| = &}.

Q@ —«ku(x) = (p(x) — @)t + (¢(x) + @)~ (soft thresholding)
O (), together with @ € Y = H}(Q) N C®¥(Q), implies &, /i € Y.

@ (O also implies a second sparsity property: u(x) =0 < |¢(x)| < @.
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ing ready for the optimization algor

First order optimality conditions may suggest what kind of optimization algorithm
we can use

e u=Proj, (—%95), so a fixed-point algorithm could be used as a last resource!

o VJ(u) = p, + Ku, so we can use a projected gradient algorithm.
Barzilai-Borwein strategy for the choice of the step size results in an incredibly
good performance, but ...

The convergence is linear.
The computation of the gradient requires the solve of the non-linear state

equation.

At each step, we have to project onto the L'(Q) ball

For the parabolic, we have to do these projections for every instant of time.
Our problem maybe/is non convex.

@ A question arises: Could we use semismooth Newton?

e Superlinear convergence.

e Only linear PDEs must be solved.

o Well known globalization and continuation techniques.

o Successful for problems with bound constraints or problems with L'()
regularization.

28/62



More consequences of the first order conditions

/ i(u—0)dx <0Vu € Uy <= [i € @0j(u), where® = ||fil| ;o (0)
Q

Connection with L'(2) penalization for some w > 0

E, i :
(E.), min J(u) + o]l

If u* € L>°(Q) is a local solution of (E,), then there exist y* = y; € Y,
©* = @z € Y and \* € 9j(u*) such that

"+ kUt WA =0.

@ The solution @ of (E), satisfies first order necessary conditions of problem (Ez).

o The difficulty is that we do not know @ beforehand.
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Towards semismooth Newton

o Now it is standard to write the subdifferential condition using max and min
u(x) = max{0, a(x) + C((x) — ©)} — min{0, a(x) + C(A(x) + &)} = 0

fora.a.x € QandallC >0
@ On the other hand, j(u) < v = i = 0 implies

®20, j(@)—v<0, & (j(a)—v)=0
This complementarity system can be written as

@ —max{0,0+ D-(j(z) =)} =0YD>0
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First order optimality conditions revisited

@ Suppose U € Uy N L*°(Q) is a local solution of (E). Then, there exist y, ¢ € Y,
f € L>*(Q) and & € R such that

Ay+f(y)=uainQ, y=0o0nT

A+ (y)p=y—yainQ, g=0o0nT.
PpH+KU+p=0

u—max{0,u+ C- (i —®)} —min{0,u+ C-(Z+@)} =0foraa. x € Q, VC >0

w—max{0,w+ D- (j(u) — )} =0VD >0

@ We can try semismooth Newton on this system.
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Second order conditions

. o _ Ty — 4
C;,:{VEL2(Q):j(u)v:0andj(u;v){Sg ifﬁg%—zz:dg%g}

@ Necessary conditions: if T is a local solution of (E), then
J'(@)vV* > 0Vv € G
o Sufficient conditions: if u satisfies first order optimality conditions and
J'(@)v* > 0Vv e G\ {0}

then @ is a local quadratic solution in the sense of L?(Q).

Why do we work so hard to get second order conditions

About the importance of second order conditions, see
E. Casas and F. Tréltzsch (2015). “Second order optimality conditions and their role in PDE control”. In:

Jahresber. Dtsch. Math.-Ver. 117.1, pp. 3-44




Further uses of second order conditions

@ For 7 > 0 define the extended cone.

cl = {v e L*(Q) : I/ (@)v| < 7[v] o) and

|J (@) < 7lvlle@ ifj(a)=~yand i #Z0
J(@v) <7lvllpe ifja)=yandi=0

o If u satisfies first order optimality conditions and J/(@)v? > 0 Vv € Gy \ {0},
then there exist € > 0 and 7 > 0 such that
S (u)v? > T||V||i2(sz) Vu € Bpg)(,¢e), Vv e G

o This will be very useful to obtain error estimates and convergence of
Newton-like methods.
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© Numerical discretization
@ Finite element discretization
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Finite element discretization

@ Suppose €2 is convex and polygonal or polyhedral.

o Consider a quasi-uniform family of triangulations {75} x>0

o Define
a(y,n) = / > a;0,y0n + aoyn | dx Vy,n € H'(Q),
o\ &
ij=1
Yo ={yn € C(Q): yyr € P(T)VT € Thand y,, = 0on T},
= {uy € C(Q) : upr € P(T)VT € Tp}.
@ Denote {¢;}".,, N = N(h), the nodal basis associated to the nodes {x;}"_, of

the triangulation and suppose {x;}N',, N; =

N
= Z yiei(x)
i=1

y=W-

,YN”O,

"30)T7

N;(h) are the interior nodes.
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State discretization

@ Forevery u € [*(Q) there exists a unique y,(u) € Y} such that

a()’hanh)“‘/f(yh)nhdx =/ unpdx Vnp € Y.
Q Q

@ Since Q is convex, y, € Y, := Y N H*(Q) for every control u € L*(R2), and

lyu = ya()ll i) < C(llullzg@) + 1)A.

Parabolic problem

For the parabolic problem, we also need for later use an error estimate in L°°(Q).

o Gp: Uy — Yp, Gu(up) = yu(up) is of class C2. For all up, vy € Up,
zp(vp) = G'(up)vi, € Yy is the unique solution of the linear equation

a(Zhﬂ?h)+/f'(yh(Uh))Zh77th= / ViTindx Y € Y
Q Q
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Control discretization

@ Piecewise constant discretization can be done, but let us focus on continuous
piecewise linear controls.
@ Notice that although we could try to use

anlloey = /
Q

N
llunll 720y = Z uiuj/ﬂeiejdx =u"Mu,

ij=1

N

E uje;

i=1

dx

where M is the mass matrix of the fem basis, u = (uy, .. ., uN)T,
o the solutions of the discrete problem

. 1 2 K 2
wmin  Sllya(u) = yallig) + 5 sl

need not satisfy the same sparsity properties as the solutions of the
continuous problem.

@ And also, the numerical computation of ||u||;1(q) can be computationally
expensive.
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The “correct” way to discretize the control

o Instead, use the diagonal lump matrix L, where ¢;; = fQ e;dx and define

N N
(uny vi)n = u" Lo =Y uviliy, uplly = (un, un)ny jn(un) = uilli

i=1 i=1

These are approximations using the trapezoid rule. Let /4 be the nodal interpolator:

lanll2 = /Q W), ja(un) = /Q I s

@ We consider problem

. 1 2 K 2
(Eh) Uhfgb:adfh(uh) = - llyn(un) = yalli ) + 3 lually

where
Unad = {un € Up : ju(up) < v}
o Notice that j(up) < ja(un), and hence Upaq C Unq.
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Existence of solution and differentiability properties

o ||up||n is an equivalent norm in Uy to ||up|2(q), with equivalence constants
independent of h.
So Jp is coercive. Since Uy o4 is closed, there exists a solution Uy, € Up a4.

o J,: U, = Ris of class C. For all up, vy € Uy
Jo(un)ve = / ©n(un)vidx + K(un, va)n,
Q

where @p(up) € Yy, is the unique solution of the linear equation

a(nn, n) + /Qf'(yh(Uh))cphnhdx = /Q(Yh(uh) — Ya)hdx Y1y € Y.

@ ju: Uy — Ris convex and Lipschitz. A\, € 9ji(up), the convex subdifferential of
up, w.r.t. the scalar product (-, -)p, iff

1 ifu; >0
[—1,1] ifui=0
—1 ifu; <0

Ai

mo
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Dealing with the discrete adjoint state

@ The expression J (up)vy, = fQ wn(up)vadx 4+ K(up, vi)n mixes two different
scalar products, and can be difficult to handle.

e For ¢ € L'(Q) we use Carstensen’s quasi-interpolation operator
My, : L](Q) — Up by
gpe,dx
Myp = Z fQ
i=1 Q e'

@ Among many other properties, we have that
/ cpvhdx = (I'Ihcp, Vh)h VQD S L](Q) Vv, € Up.
Q

o Given up, € Up, | will name ¢y(up) = Npn(up) € U
We have ¢ = L7 Mep, ie., ¢; = W, i=1,...,N.
e
e Now

N
Ji(un)ve = (n(un) + Kun, vy = Y (i + £ vili

i=1
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© Numerical discretization

@ Optimality conditions and sparsity properties

41/62



First order optimality conditions

Let Ty € Uy aa be a local solution of (P,). Then there exist y, @5 € Yy and iy € Uy
such that

a()_’h,nh)+/f()7h)77hdx: / Upnpdx Vp € Yy,
Q Q

a(nn, §n) + /f'()_/h)@hnhdx = /(}_/h — Ya)nndx Y, € Yy
Q Q

Gi+ KU+ =0Yi=1,...,N
(Zins up — Un)p < 0Vup € Upad
where _
T fQ Preidx

o = eridx ,i=1,...,N
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Sparsity properties of the discrete solution

For a fixed index i € {1,..., N}, using test controls u, € U aq satisfying u; = u; if
i # j, we can deduce element-wise analogous properties to those of local solutions
of (P):

@ Foreveryi=1,...,N, u; and ji; have the same sign.

Q Jju(tn) <y = fn=0.

@ Name &y, = ||finl| 1= (@) = lBlloc = max{|fii], i=1,...,N}.

If jo(up) = v and fip Z 0, then u; # 0 = || = ©p.

Q@ —ku; = (¢ — @)t + (i + ©p)~ (Soft thresholding)

@ (5 implies a second sparsity property: i; = 0 <= |¢;| < @p.

Q i € ©r0jn(un)
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© Numerical discretization

@ Convergence and error estimates
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Convergence

For every h > 0, let Uy, € Up aq be a local solution of (Ey). Then {Up} o is bounded in

L>=(Q) and if a sequence G, — T in L°(Q) as h — 0, then @ is a local solution of (E)
in the sense of L*(),

lim [[Gy — alli2@) = 0, lim Jo(@n) = J(@) ")

Let u € Uy be a strict local minimum of (E) in the sense of L*(2). Then there exist
ho > 0 ande > 0 and a sequence {Tp }n<n, of local minima of (Ey) such that (*) holds
and

_]h(l_lh) = min{jh(uh) Dup € Upaa N BLz(Q)(l_l, 6)}

Parabolic problem

Same results for the parabolic problem, but proofs require more steps and error estimates in L°°(Q) for

the state equation.

A B =TT
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Error estimates

Let @ be a local solution of (E) in the L*(2) sense such that J”'(d)v* > 0 for all
v € Gz \ {0}, and let {uy} be a sequence of local solutions of problems (E) such that
U, — 0 in L*(Q). Then, there exist hy > 0 and C > 0 such that

llan — Z’HLZ(Q) < ChVh < hy.

o Remark: In general, we only know that & € Hy(2), so |7 — M|l 2(q) < Ch,
and in this sense, the above estimate can be seen as “optimal”.

Parabolic problem

For the parabolic problem, we obtain

Ill_lh — l_J”Lz(Q) S C(h+ ‘I') Vh < ho, A\ < T0,

where 7 is the time step size.
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@ Optimization methods
@ Projected gradiente method
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Projected gradient method

Algorithm 1: Projected gradient with Barzilai-Borwein stepsize

Initialize k = 0, u, so, 8 = VJ(uo)
while not convergence do

U1 = Uk — Sk8k // Move in a descent direction
upy1 = Proj, (Tiyr) // Project onto the L' ball
&1 = VJ(uks1) // Compute the new gradient
Oy = Ukg1 — Uk, Og = k1 — &k // Compute new stepsize
Compute either s;11 = % or Sk = Eg“gg
k:=k+1

end

J. Barzilai and J. M. Borwein (1988). “Two-point step size gradient methods”. In: IMA J. Numer. Anal. 8.1,
pp. 141-148

L. Condat (2016). “Fast projection onto the simplex and the [ ball”. In: Math. Program. 158.1-2, Ser. A,
pp. 575-585

A. Ang (n.d.). Notes. UrL: https://angms.science/notes.html

48/62


https://angms.science/notes.html

@ The computation of the gradient requires solving the nonlinear state equation
and the linear adjoint state equation.

o In finite dimension VJ(up) = ¢n(up) + Kup, and (-, ) = (-, )n
@ The stepsize for steepest descent is s, = arg min J(uy — sgi). Barzilai-Borwein
S

strategies satisfy respectively for each of the choices
Skp1 = arg msin 64 — s0g||} or Skt = arg msin |56 — 6gll,

o The projection onto the L'-ball is computationally expensive.

Parabolic problem

For the parabolic problem, we have to project N times at each step, where N is the number of time

steps of the discretization.
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@ Optimization methods

@ Semismooth Newton method
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Semismooth Newton method (ongoing work)

XX =Y, X Y, x L®(Q) x L®(Q) x R, X2 = [3(Q) x L2(Q) x 2(Q) x L>(Q) x R.
For fixed positive C and D, define F : X*° — X% as

Ay +f(y) —u
A+ f(y)e =y +ya
P+ rU+p
u—max{0,u+ C(u —w)} — min{0, u+ C(p + w)}
w — max{0,w + D(j(u) — )}

-
€T o€ X<
I

For given x = (y, p, u, i, w) € X°°, we define the active and inactive sets as
AT ={x € Q: u(x) + C(u(x) — w) > 0},
A7 ={x € Q:u(x)+ C(u(x) +w) < 0},
A=ATUA",
I=0Q\A.
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Slant derivative of F

There exists p > 0 such that the function F is slantly differentiable in B(x, p).
Moreover, for every x € X*°, define G(x) € L(X*, X?) as

Ad, + f'(y)d, — du

é
AN A0+ £ — (1= ()0,
al & 5“’ _ dp + Ky + 9,
i 5 Sux1 — COyuxa + Cou(xa+ — Xa-)
" 5” O ifw+ D(j(u) —v) <0
@ —D [o Moudx  if w+ D(j(u) —7) >0

where A € 9j(u). Then G is a slanting function for F.
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Semismooth Newton’s method

Algorithm 2: Semismooth Newton’s method

Initialize k = 0, Xp = (y(), ©o, Uo,/Jo,wO)
while not convergence do
Compute the active and inactive sets A,f, A A T
if wy + D - (j(uk) —v) > 0 then
| Choose A\x € 9j(uy)
end
Solve G(xx)dx = —F(xx)
Choose a stepsize s, < 1
X1 = Xk + Si0x
end
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Solving the linear system G(xy)d

Ab, +f'(y)0, = —Ay —f(y) +u+6,inQ, 6, =0onT (1)

A8, + f1(y)0p = 0,(1=f"(y)p) — Ao — f'(y)p+y—yainQ, 6, =00nT (2)
0p + KOy + 0y = —— KU — [ (3)
duX1—Cuxa+Cou(xa+—xa-) = —u+max{0, u+C(p—w)}+min{0, u+C(pu+w)}
4)

0y = —wifw+ D(j(u) —v) <0 (51)

—/Aéudx:j(u)fvifww(j(u)w) >0 (5)
Q
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Solving the linear system G(x)dx = —F(x)

o Notice that ,x1 = —uxi, so we split §, = —ux1 + duxA.-
@ Using this we split §, = 5])1, + 5;* and 0, = 5110 + 5@
- Fixed part:
A‘S;H/ +f/()’)5],1/ =—A —f(y)+u—uxinQ, 511, =o0on',
A“S, +f'(y)6, =6,(1—f"(¥)e) = A" — f' (V)¢ +y —yainQ, 6, =0onT,
- Part linear in §,xa
A(s;} 'Hcl()’)fsyA =duXa in Q, 5é =0onTl
* oA A _sA . A
A5, 4 f'(y)0p =0, (1= f"(y)p) inQ, 6, =0onT

@ We can use the fourth equation to deduce 6, = —p1 + (xa+ — xa- )(w + dy,) in
A.

o We will use the third equation to compute §,, = —0, — ¢ — p in L once §, has
been computed.
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If w+ D-(j(u) —~) <0, then §,, = —w. Using (4) we have §,, = —p in A. The third
equation can be written now as

A _ gl .
0y + K0y = =0, —p — Kuin A
This equation, together with the two linear PDEs for 5;? and 5@ are the optimality
system of the unconstrained linear quadratic control problem
min 1/(1 — £ (y) )02 dx + z / §2dx — / § (— 6L —p— ffu)dx
8,€12(8) 2 Jg Y 2 Jy " A v
AéﬁX —i—f’(y)éﬁX = dyxa in Q, (5yA =0onTl

Use Conjugate Gradient to solve AJ% = b, where A5% = (5@ + k%) x4 and
— T
b= (-0, — ¢ — ku)xa.
Compare with §14 in E. Casas and M. Mateos (2017). “Optimal control of partial differential equations”.
In: Comp. Math., Num. An. and Apps. Vol. 13. SEMA SIMAI Springer Ser. Pp. 3-59
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Suppose now that w + D - (j(u) — ) > 0. Now equation (3) reads like
5ﬁ+f~e5u = —559 — ¢ —rku—(xa+r — xa-)(w+d,)in A

For the simplest choice of A € 9j(u), eq. (5) is
/Q(XA+ = Xa-)dudx =7 = j(u)

These two equations, together with the two linear PDEs for 5;,* and 5:§ are the
optimality system of the linearly constrained linear quadratic control
problem

S,€L2(A) 2

min 1/(1—f”(y)go)éy‘vdx—l—ﬁ/(5§dx—/ 6u<—6110—cp—/£u—(XA+—XA—)w)dx
Q 2/ A

it /A (s — Xa-)oudx = v — j(u)

Here, §,, plays the role of the Lagrange multiplier related to the linear constraint.
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@ Optimization methods

@ Numerical results
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Numerical comparison of the optimization methods.

Consider the problem (E) with data Q = (0,1)", n=1,2,3, A= —-A,k =1,
ya(x) = [11,sin(2mx;) and f(y) = e’ and v = 0.005 - 2",
@ We can solve the problem with both methods.

@ Projected gradient with Barzilai-Borwein is faster in almost all cases for this
example.

o But in dimension 3 with h = 1/2° (274 625 nodes) Newton’s method is faster.

@ The main reason is that in this case, the computation of y, is very expensive.

Parabolic problem

Ongoing work. Since in this case the solution of the nonlinear equation is much
more “expensive” in the parabolic case, we expect Newton’s method to be faster.
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Observed error estimates (Parabolic problem)

n=10=(0,1), A= —A, f =0 (linear equation) y, =0, T = 1,5 = 10~* and
ya(x, t) = exp(—20[(x — 0.2)* + (t — 0.2)*]) + exp(—20[(x — 0.7)> + (t — 0.9)%])

Data from Ed. Casas, R. Herzog, and G. Wachsmuth (2017). “Analysis of spatio-temporally sparse

optimal control problems of semilinear parabolic equations”. In: ESAIM Control Optim. Calc. Var. 23.1,

pp.- 263-295
hi = ‘ ||a011 — DUii”LZ(Q) EOC

278 1.76E — 1
29 8.93E — 2 0.98
2-10 4.49E — 2 0.99

Table: Experimental order of convergence. Simultaneous refinement in space and time.

hi | o, — o, lli2iq EOC 7 | Uy, — U, EOC

28 1.10E — 02 — 278 | 1.76E — 1 —
27° 3.87E — 03 1.51 2% | 893E—2 0.98
2-10 1.34E — 03 1.53 27101 449E—2 0.99

Table: Left, refinement only in space. Right, refinement only in time.
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Sparsity properties (n = 2, parabolic problem).

t=0.00, ||l.l(t)||1 =2.00
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