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Program

Talk based on arXiv:2012.15653, will cover and compare:
I the Chen-Fliess expansion,
I the Magnus expansion,
I our variation around Magnus.

Each has its advantages and drawbacks for studying controllability;
no free lunch principle!

This talk skips Sussmann’s infinite product expansion, which is
really interesting and covered in the (long) paper.
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An old question

Let f0, f1 ∈ C∞(Rn;Rn), real-analytic, with f0(0) = 0. Consider

ẋ = f0(x) + u(t)f1(x)

Notation x(t;u, p) for init. data p ∈ Rn and control u ∈ L∞(0, T ).

Definition (Small-time local controllability)
For every T, η > 0, there exists δ > 0 such that, for every x∗ ∈ Rn
with |x∗| ≤ δ, there exists u ∈ L∞(0, T ) such that x(T ;u, 0) = x∗

and ‖u‖∞ ≤ η.

Necessary and sufficient conditions on f0, f1 for STLC? Still open!

Definition is coordinate-invariant, so the answer must be too!
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Goal of the talk: computing the final state

An essential point to study STLC is to compute x(T ;u, 0)!
Thus, we must solve a time-varying ODE ẋ = f(t, x).

Also important for stochastic ODEs and numerical splitting.

Key difficulty: lack of commutativity with time variation.
For example, in R2 the solution for u(t) = t to

ẋ =
(

0
x2

)
+ u(t)

(
x2
0

)
=
(

0 t
0 1

)
x = A(t)x

is not given by (
exp

∫ t

0
A(s)ds

)
x(0).
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Here comes the commutator
For f, g ∈ C∞(Rn;Rn), the Lie bracket [f, g] ∈ C∞(Rn;Rn) is

(f · ∇)g − (g · ∇)f = (Dg)f − (Df)g

For example, with f =
(

0
x1

)
and g =

(
1
x2

2

)
,

[f, g] =
(

0 0
0 2x2

)(
0
x1

)
−
(

0 0
1 0

)(
1
x2

2

)
=
(

0
−1 + 2x1x2

)

Or, identifying f, g with first-order differential operators
f · ∇ = x1∂2 and g · ∇ = ∂1 + x2

2∂2, [f, g] is identified with

[f, g] · ∇ = (x1∂2)(∂1 + x2
2∂2)− (∂1 + x2

2∂2)(x1∂2)
= x1∂21 + 2x1x2∂2 + x1x

2
2∂22 − ∂2 − x1∂12 + x1x

2
2∂22

= (−1 + 2x1x2)∂2
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Sophus Lie (Norwegian)

Sophus Lie (1842-1899),
mistaken for a German spy in 1870,
released from prison by Darboux.
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Lie brackets are the best (episode 1)

Consider
ẋ = u1(t)f1(x) + u2(t)f2(x)

For ε > 0, take controls (u1, u2) equal to
I (1, 0) for t ∈ [0, ε],
I (0, 1) on [ε, 2ε],
I (−1, 0) on [2ε, 3ε],
I (0,−1) on [3ε, 4ε].

Then
x(4ε;u, 0) = ε2[f1, f2](0) +O(ε3)

One can move in more complex directions, e.g. [f1, [f2, [f2, f1]]].
Very important for control!

7



Lie brackets are the best (episode 2)
Consider ẋ = f0(x) + u(t)f1(x) with f0(0) = 0 and x(0) = 0.

Let φ be a smooth diffeomorphism Rn → Rn with φ(0) = 0.
Then y := φ(x) solves y(0) = 0 and ẏ = g0(y) + u(t)g1(y) where

gi(y) := (φ∗fi)(y) := (Dφ)|φ−1(y)fi(φ−1(y))

Moreover, [g0, g1] = φ∗([f0, f1]) and this holds for any Lie bracket!
For a formal bracket b, we write gb = φ∗fb.
In particular, there exists a matrix L ∈ GLn(R), L = Dφ|0 such
that

∀b, gb(0) = Lfb(0)

For example,

[[g1, g0], [[g1, g0], g0]](0) = L[[f1, f0], [[f1, f0], f0]](0)
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Lie brackets are the best (episode 3)

Consider ẋ = f0(x) + u(t)f1(x) with f0(0) = 0 and x(0) = 0.
Consider ẏ = g0(y) + u(t)g1(y) with g0(0) = 0 and y(0) = 0.

Theorem (Krener, 1973)
Assume that there exists L ∈ GLn(R) such that

∀b, gb(0) = Lfb(0).

Then there exists a (local) diffeomorphism φ from Rn → Rn with
φ(0) = 0 such that, for all u ∈ L∞ and t small enough,

y(t;u, 0) = φ(x(t;u, 0)).

Important consequence: STLC can only depend on {fb(0); b}.
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Goal of the talk (revisited)

Consider ẋ = f0(x) + u(t)f1(x) with f0(0) = 0 and x(0) = 0.

Goal: Find a formula for x(T ;u, 0) for T small enough which
depends only on the vectors fb(0) ∈ Rn, so on
I f1(0) (f0(0) = 0 is useless),
I [f0, f1](0),
I [f1, [f0, f1]](0),
I . . .

Classical approach from an analyst’s point of view: find an
asymptotic expansion with respect to a small parameter, e.g.
T � 1 or ‖u‖∞ � 1.
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A best-seller: the Chen-Fliess expansion

Very widely used in the control theory community to prove
necessary conditions for STLC.
I Sussmann, 1983. First quadratic obstruction.
I Stefani, 1986. Strongest obstruction at each even order.
I Kawski, 1987. Second quadratic obstruction.
I Giraldi, Lissy, Moreau, Pomet, 2019. 2-controls obstruction.
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A best-seller: the Chen-Fliess expansion
Could also be called iterated Duhamel expansion (in time).
Consider ẋ = f0(x) + u(t)f1(x) with x(0) = 0.
I Order 1: Since x(t) ≈ 0, ẋ(t) ≈ f0(0) + u(t)f1(0) so

x(t) ≈ x1(t) := tf0(0) + (
∫ t

0
u)f1(0)

I Order 2: Hence ẋ(t) ≈ f0(x1) + u(t)f1(x1) so

x(t) ≈ tf0(0) + (
∫ t

0
u)f1(0)

+ t2

2 (f0 · ∇)f0(0) + (
∫ t

0

∫ s

0
u)(f0 · ∇)f1(0)

+ (
∫ t

0
su(s))(f0 · ∇)f1(0) + (

∫ t

0
u(s)

∫ s

0
u)(f1 · ∇)f1(0).

Involves non-intrinsic quantities such as (f1 · ∇)f1(0)!
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Why it is so widely used?

I It is easy to derive. Few algebraic prerequisites.
I It comes with nice explicit expressions (functionals of u) of

the scalar coefficients in front of the involved vectors.
I It converges locally in time for analytic vector fields.

But ... it does not depend solely on the {fb(0)}. So, to obtain
control results, each author must work to reconstruct the Lie
brackets and hide the undesired terms.

So we look for something else!
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Lossless linearization?

Usually,

nonlinear problem ≈ linearized problem in the same space
+ small remainder

Here, we use another version

nonlinear problem = linearized problem in a larger space
+ nothing
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Linearization trick

Consider ẋ = f0(x) + u(t)f1(x), which is a nonlinear problem.

Define the zero-order operator

L(t) :
{
C∞(Rn;R)→ C∞(Rn;R)
ϕ 7→ (p 7→ ϕ(x(t;u, p)))

Then, ∀ϕ ∈ C∞(Rn;R), ∀p ∈ Rn,

d
dt(L(t)ϕ)(p) = Dϕ(x(t;u, p)) (f0(x(t;u, p)) + u(t)f1(x(t;u, p)))

= (L(t)(f0 · ∇+ u(t)f1 · ∇)ϕ)(p)

So, in the weak-weak sense, L̇(t) = L(t)(f0 · ∇+ u(t)f1 · ∇).
We are solving a linear differential equation in Op(C∞(Rn;R)).
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Welcome to algebra

Let X := {X0, X1} be non-commutative indeterminates.

Let A(X) the free algebra over X, i.e. the vector space of
non-commutative polynomials of X0, X1.
For example 1 + 7X0 + (3X0X1 + 2X1X0) + 42X3

1 ∈ A(X).
A(X) = ⊕n∈NAn(X) (spanned by monomials of degree n).

Let Â(X) the formal series generated by A(X), i.e. sequences
(an)n∈N with an ∈ An(X). Notation a =

∑
n∈N an.

For example ∑
n∈N

nnXn
0 + en

3
Xn

1

 ∈ Â(X)

No1 convergence issue!

1Always read the small notes
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Formal linear differential equations
Let T > 0 and u ∈ L∞(0, T ).
Consider the formal differential equation in Â(X){

ẋ(t) = x(t)(X0 + u(t)X1),
x(0) = 1.

Definition
The solution to this formal equation is the formal-series valued
function x : [0, T ]→ Â(X) whose homogeneous components
xn : [0, T ]→ An(X) are given by x0(t) = 1 and

xn+1(t) =
∫ t

0
xn(s)(X0 + u(s)X1)ds.

If u(t) = 7t, then x0(t) = 1, x1(t) = tX0 + 7t2
2 X1, ...

If u(t) = 0, then x(t) =
∑
n∈N

tn

n!X
n
0
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Formal Chen-Fliess expansion

Theorem (Classical)

x(t) =
∑
n∈N

∑
σ∈{0,1}n

(∫ t

0
uσ

)
Xσ1 · · ·Xσn ,

where ∫ t

0
uσ :=

∫
0<τ1<···<τn<t

uσ1(τ1) · · ·uσn(τn)dτ

with u0 := 1 and u1 := u.

Proof: Use the integral definition of xn+1.
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Chen-Fliess expansion for nonlinear ODEs

Theorem (Sussmann, 1983)
Let f0, f1 ∈ C∞(Rn;Rn) real-analytic. Let u ∈ L∞(0, T ). For
t > 0 small enough

x(t;u, 0) =
∑
n∈N

∑
σ∈{0,1}n

(∫ t

0
uσ

)
((fσ1 · ∇) · · · (fσn · ∇)Id) (0),

where the sum converges absolutely.

Proof: Use that x(t;u, 0) = (L(t)ϕ)(0) for ϕ := Id and that L
solves a linear differential equation + analytic estimates for
products of first order differential operators.

Absolute convergence implies that one can obtain error estimates
with respect to t and/or u by summing partial series.
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Beyond Chen-Fliess?

Recall that, when solving the formal linear differential equation for
u(t) = 0, then x(t) =

∑
n∈N

tn

n!X
n
0 .

Thus
x(t) = exp(tX0)

One can indeed define expS for any S ∈ Â(X) such that S0 = 0
as

expS :=
∑
n∈N

Sn

n!

Can we find a similar nice formula when u 6= 0?
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Wilhelm Magnus (German)

On the exponential solution of differential equations for a linear
operator, Communications on pure and applied mathematics, 1954

Wilhelm Magnus (1907-1990),
son of Alfred,
and his son Alfred.

He considers a formal linear equation ẋ = A(t)x and finds Ω(t)
such that x(t) = exp(Ω(t)).
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Free Lie algebra

For S1, S2 ∈ A(X), we can define the Lie bracket

[S1, S2] := S1S2 − S2S1

Then,
I L(X) := free Lie algebra over X, i.e. the smallest vector

subspace of A(X) containing X and stable by Lie bracket
I Ln(X) := L(X) ∩ An(X) its homogeneous components. For

example L3({X0, X1}) is spanned by [[X1, X0], X0] and
[X1, [X1, X0]]. So dim L3 = 2 whereas dim A3 = 8

I L̂(X) denotes the series S ∈ Â(X) such that Sn ∈ Ln(X).
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Formal Magnus expansion
Consider ẋ = x(X0 + u(t)X1).

Theorem (Strichartz, 1987)
Then x(t) = expZ(t,X, u) where Z(t,X, u) ∈ L̂(X) is defined by

Z(t,X, u) :=
+∞∑
r=1

r∑
m=1

∑
r∈Nm

r

(−1)m−1

mr

∫
Tr(t)

[· · · [X0 + u(τr)X1, X0 + u(τr−1)X1], . . . , X0 + u(τ1)X1]dτ

Nmr := {r ∈ (N∗)m of sum r} and Tr(t) is a pyramidal domain.

Proof:
I Using an abstract criterion, prove that log x(t) ∈ L̂(X).
I Using C-F, prove the above formula without brackets and 1/r.
I Apply Dynkin’s theorem: S ∈ Lr(X)⇒ S = 1

r× bracketing.
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Magnus expansion for nonlinear ODEs

Consider ẋ = f0(x) + uf1(x).

Theorem (≈ Folklore)
Let M ∈ N. If f0, f1 are smooth, then, for small t,

x(t;u, 0) = eZM (t,f,u)(0) +O(tM+1)

where ZM (t, f, u) ∈ C∞(Rn;Rn) is the sum Z(t,X, u) truncated
to r ≤M (thus a finite sum) and where we replace Xi by fi.

The formula involves a time-one flow: eg,
i.e. eg(0) := y(1) where y(0) = 0 and ẏ = g(y).
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Fun facts

I If the Lie algebra generated by f0 and f1 is nilpotent of order
M , then

x(t;u, 0) = eZM (t,f,u)(0)

and this does not require analyticity of f0, f1 (not so easy).

I If fi(x) = Aix where Ai ∈Mn(R) and

‖A0 + u(·)A1‖L1(0,T ) <
1
4 or π (harder)

then ZM (t, A, u) converges as M → +∞.
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Lack of convergence & control estimates

There exist f0, f1, u analytic and small such that, for every t > 0,
I first,

lim
M→+∞

|ZM (t, f, u)(0)| = +∞

and
lim

M→+∞
|x(t;u, 0)− eZM (t,f,u)(0)| = +∞

so even no weak convergence in the sense of the flow.
I and, the subseries within Z(t, f, u) containing f1 at most

once does not converge, which prevents estimates

|x(t)− esome convergent subseries| ≤ C‖u‖k

Really non convergent!
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Interaction picture
A classical idea in quantum mechanics when one has a Hamiltonian
H(t) = H0 +H1(t) where H0 is well understood / solvable.
I One introduces |ψI(t)〉 := e−iH0t|ψ(t)〉
I H(t) becomes eiH0tH1(t)e−iH0t

Cat planning his revenge
(© Open Culture)
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Our formal Magnus in the interaction picture expansion
Consider ẋ = x(X0 + u(t)X1).

Theorem
Then x(t) = exp(tX0) expZ(t,X, u) where Z(t,X, u) is defined
by

∑(−1)m−1

mr

∫
Tr(t)

(τr − t)kr

kr!
· · · (τ1 − t)k1

k1! u(τr) · · ·u(τ1)

[· · · [Mkr ,Mkr−1 ], . . . ,Mk1 ]dτ

where Mk = [X0, [X0, . . . [X0, X1] · · · ]] with k times X0 and the
sum is taken over r ≥ 1, 1 ≤ m ≤ r, r ∈ Nmr and k1, . . . kr ∈ N.

Proof: Introduce y(s) := x(s)e(t−s)X0 . Then

ẏ(s) = y(s) · e−(t−s)X0u(s)X1e
(t−s)X0 = y(s) ·

+∞∑
k=0

(s− t)k

k! u(s)Mk
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Back to bases
Z(t,X, u) ∈ L̂(X) but the previous expansion is not directly
written on a basis of L̂(X), e.g. because [M0,M1] = −[M1,M0].
Nevertheless,

Proposition
For any “monomial” basis B of L(X), there exists functionals
ηb : R+ × L∞ → R for b ∈ B such that

Z(t,X, u) =
∑
b∈B

ηb(t, u)b

They are causal, and homogeneous.
For example, if B contains {X0, X1, [X1, X0]},
I ηX0(t, u) = 0,
I ηX1(t, u) =

∫ t
0 u,

I η[X1,X0](t, u) =
∫ t

0
∫ s

0 u, ...
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Our expansion for nonlinear ODEs

Consider ẋ = f0(x) + uf1(x).

Theorem
Let M ∈ N. If f0, f1 are analytic, then, for small t and u ∈ L∞,

x(t;u, 0) = eZM (t,f,u)(etf0(0)) +O(‖u‖M+1
W−1,∞)

where ZM (t, f, u) is the sum Z(t,X, u) truncated to r ≤M and
where we replace X0 by f0 and X1 by f1 (which converges in Cω).

The formula involves the composition of two time-one flows.

Caution: As for the Magnus expansion, ZM (t, f, u) may not
converge as M → +∞ to some Z(t, f, u).
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From an expansion to a representation formula

Consider ẋ = f0(x) + u(t)f1(x) with f0(0) = 0.

Theorem
If f0, f1 are analytic, then, for t and u ∈ L∞ small enough,

x(t;u, 0) = ZM (t, f, u)(0) +O(‖u‖M+1
W−1,∞) + o(|x(t;u, 0)|).

Proof: Use
I the previous formula and error estimates,
I etf0(0) = 0,
I that eg(0) = g(0) +O(‖g‖|g(0)|) for any vector field.

This was the main goal of the talk!
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Where to go from here... if you feel pessimist

x(T ;u, 0) = ZM (T, f, u)(0) +O(‖u‖M+1) + o(|x(T ;u, 0)|)

Assume that you have f0, f1, M ∈ N and T > 0 such that

Ran (u 7→ ZM (T, f, u)(0))

is included in a half-space R+ × Rn−1 of Rn. Then not STLC?

Proposition
Yes. Under the condition that 〈ZM (T, f, u)(0), e1〉 ≥ F (u) where
F is such that the smallness assumption on the control implies
‖u‖M+1 � F (u).

This is the case for all known positive results.
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Where to go from here... if you feel optimist

x(T ;u, 0) = ZM (T, f, u)(0) +O(‖u‖M+1) + o(|x(T ;u, 0)|)

Assume that you have f0, f1, M ∈ N and T > 0 such that

u 7→ ZM (T, f, u)(0)

is locally onto from L∞ to Rn. Then STLC?

Proposition
Yes. Under the additional assumptions that z ∈ Rn 7→ uz ∈ L∞
(for which ZM (T, f, uz)(0) = z) is continuous, u0 = 0 and
‖uz‖ ≤ |z|α for α > 1

M+1 .

This is the case for all known positive results.
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We can work it out?

Next steps are to find bases B of the free Lie algebra over
{X0, X1} to overcome the following difficulties
I reflect the asymmetry between X0 and X1 (→ not correctly

embedded in known Philipp-Hall bases or Lyndon bases)
I ensure the absolute convergence of ZM (T, f, u) (→ linked

with the growth of structure constants of the free Lie algebra)
I yield computable coefficients ηb(T, u) for b ∈ B (→ linked

with the relation between pseudo-first kind coordinates and
Sussmann’s infinite product with coordinates of the 2nd kind)

I separate “good” and ”bad” brackets (→ nice question, open
problem starting with L5,4(X0, X1))
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Thank you for your attention!

To study controllability:
I Chen-Fliess is attractive but involves undesired monomials,
I Magnus is intrinsic but does not converge and only yields

error estimates in time and not in the size of the control,
I our variation

I is intrinsic (only involves Lie brackets),
I yields error estimates in the size of the control,
I does not converge fully,
I only provides an approximate representation of the state.

One can remember, for local results,

x(T ;u, 0) ≈ ZM (T, f, u)(0)
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