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Program

Talk based on arXiv:2012.15653, will cover and compare:
» the Chen-Fliess expansion,
» the Magnus expansion,
» our variation around Magnus.

Each has its advantages and drawbacks for studying controllability;
no free lunch principle!

This talk skips Sussmann'’s infinite product expansion, which is
really interesting and covered in the (long) paper.



An old question

Let fo, f1 € C°(R™;R"™), real-analytic, with fy(0) = 0. Consider

&= fo(x) + u(t)fi(z)

Notation z(t;u,p) for init. data p € R™ and control u € L>(0,T).

Definition (Small-time local controllability)

For every T, 1 > 0, there exists 6 > 0 such that, for every z* € R"
with |z*| < §, there exists uw € L*°(0,T) such that z(T;u,0) = z*
and ||ulleo < 1.

Necessary and sufficient conditions on fy, f1 for STLC? Still open!

Definition is coordinate-invariant, so the answer must be too!



Goal of the talk: computing the final state

An essential point to study STLC is to compute z(T’;u, 0)!
Thus, we must solve a time-varying ODE & = f(t, x).

Also important for stochastic ODEs and numerical splitting.

Key difficulty: lack of commutativity with time variation.
For example, in R? the solution for u(t) =t to

. 0 z 0 ¢
T = <x2> + u(t) (02> = (O 1) x=A(t)x

is not given by
t
(exp/ A(s)ds) x(0).
0



Here comes the commutator
For f,g € C°(R";R™), the Lie bracket [f,g] € C>°(R™;R") is

(fV)g—(9-V)f=(Dg)f —(Df)g

For example, with f = <J?1> and g = <;2>
2
(0 O 0 0 0 1) 0
f 9] = 0 2x9) \z1) \1 0)\23)  \—1+42z29

Or, identifying f, g with first-order differential operators
f-V =210 and g-V = 0 + 230, [f, g] is identified with
[f,9] -V = (2102)(01 + 23502) — (01 + £502) (2102)
= 21021 + 2212202 + 2125000 — 02 — 11012 + 117502
= (=14 2z122)02



Sophus Lie (Norwegian)

Sophus Lie (1842-1899),
mistaken for a German spy in 1870,
released from prison by Darboux.




Lie brackets are the best (episode 1)

Consider
& =ui(t) fi(z) + ua(t) f2()

For e > 0, take controls (u1,u2) equal to

» (1,0) for t € [0,¢],
> (0,1) on [, 2¢],
» (—1,0) on [2¢, 3¢],
» (0,—1) on [3e,4e].

Then

x(4e;u,0) = az[fl, f2](0) + 0(63)

One can move in more complex directions, e.g. [f1, [f2, [f2, f1]]]-
Very important for control!



Lie brackets are the best (episode 2)
Consider & = fo(x) + u(t) fi(x) with fo(0) = 0 and z(0) = 0.

Let ¢ be a smooth diffeomorphism R™ — R™ with ¢(0) =
Then y := ¢(z) solves y(0) =0 and ¢ = go(y) + u(t)g1

9i(y) = (0:f1) (W) == (DP) 1510 fi(d (1))

(y ) where

Moreover, [go, 91] = ¢«([fo, f1]) and this holds for any Lie bracket!
For a formal bracket b, we write g, = ¢x fp-

In particular, there exists a matrix L € GL,(R), L = D¢y such
that

Vb,  gv(0) = Lfs(0)

For example,

[lg1, 90], [[91, 90], 90]1(0) = L[[f1, fol, [[f1, fol, fol](0)



Lie brackets are the best (episode 3)

Consider & = fo(x) + u(t) fi(x) with fo(0) =0 and z(0) = 0.
Consider ¢y = go(y) + u(t)g1(y) with go(0) = 0 and y(0) = 0.

Theorem (Krener, 1973)
Assume that there exists L € GL,(R) such that

Vb,  g5(0) = Lfy(0).

Then there exists a (local) diffeomorphism ¢ from R™ — R™ with
¢(0) = 0 such that, for all u € L>° and t small enough,

y(t; U, 0) = d)(l‘(t; u, 0))

Important consequence: STLC can only depend on {f;(0);b}.
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Goal of the talk (revisited)

Consider & = fo(z) + u(t) f1(x) with f5(0) =0 and z(0) = 0.

Goal: Find a formula for z(7T';u,0) for T small enough which
depends only on the vectors f,(0) € R™, so on

» f1(0) (fo(0) = 0 is useless),
> Lo, f1](0),
> [f1, [fo, f11)(0),

> ...

Classical approach from an analyst’s point of view: find an
asymptotic expansion with respect to a small parameter, e.g.
T < 1or ||lulle < 1.
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A best-seller: the Chen-Fliess expansion

Very widely used in the control theory community to prove
necessary conditions for STLC.

» Sussmann, 1983. First quadratic obstruction.

> Stefani, 1986. Strongest obstruction at each even order.

> Kawski, 1987. Second quadratic obstruction.

» Giraldi, Lissy, Moreau, Pomet, 2019. 2-controls obstruction.
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A best-seller: the Chen-Fliess expansion

Could also be called iterated Duhamel expansion (in time).
Consider & = fo(x) + u(t) fi(x) with z(0) = 0.
» Order 1: Since z(t) =~ 0, ©(t) = fo(0) + u(t) f1(0) so

.%'(t) ~ xl(t) = tf()(O) + </0t u)fl(O)

» Order 2: Hence i(t) ~ fo(z') + u(t) f1(z!) so
=00+ (/t WAO)

// (fo-V

+</Ot () (o IO + ([ u()/ Wi~ V)A10).

Involves non-intrinsic quantities such as (f; - V) f1(0)!
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Why it is so widely used?

P It is easy to derive. Few algebraic prerequisites.

» |t comes with nice explicit expressions (functionals of u) of
the scalar coefficients in front of the involved vectors.

» It converges locally in time for analytic vector fields.

But ... it does not depend solely on the {f,(0)}. So, to obtain
control results, each author must work to reconstruct the Lie
brackets and hide the undesired terms.

So we look for something else!
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Lossless linearization?

Usually,

nonlinear problem = linearized problem in the same space

+ small remainder
Here, we use another version

nonlinear problem = linearized problem in a larger space
+ nothing
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Linearization trick

Consider & = fo(x) + u(t) f1(x), which is a nonlinear problem.

Define the zero-order operator

L) {C"O(R";R) — C®(R";R)

@ = (p = p(x(t;u,p)))
Then, Yy € C*°(R™;R), Vp € R",

d

3 (L®@) () = De(a(t;u, p) (folz(t; u,p)) +ult) fi(z(t;u, p)))
= (L(t)(fo -V +u(t)f1- V)e)(p)

So, in the weak-weak sense, L(t) = L(t)(fo - V +u(t)f1 - V).
We are solving a linear differential equation in Op(C*(R™; R)).
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Welcome to algebra

Let X := {Xo, X1} be non-commutative indeterminates.

Let A(X) the free algebra over X, i.e. the vector space of
non-commutative polynomials of X, X7.

For example 1+ 7X¢ + (3Xo X1 + 2X1X) + 42X3 € A(X).
A(X) = ®nenAn(X) (spanned by monomials of degree n).

Let A(X) the formal series generated by A(X), i.e. sequences
(an)nen with ay, € A, (X). Notation a = 3,y an.
For example

(Z n"Xg + en3x?) € A(X)

neN

No! convergence issue!

1
Always read the small notes
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Formal linear differential equations

Let 7> 0 and u € L*>°(0,T). R
Consider the formal differential equation in A(X)

The solution to this formal equation is the formal-series valued

function z : [0, 7] — A(X) whose homogeneous components
T 2 [0,T] — Ap(X) are given by z(t) =1 and

() — /0 " n(5)(Xo + u(s) X1 )ds.

If u(t) = 7t, then wo(t) = 1, z1(t) = tXo + L X, ..
If u(t) =0, then z(t) = 3 ey S XG
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Formal Chen-Fliess expansion

Theorem (Classical)

at) =y > (/Otua) X, X,

neNoge{0,1}n

where .
Uy ::/ Ugy (T1) +*  Ug, (T )dT
0 0<T1 <+ <Tp <t
with ug := 1 and uq := u.

Proof: Use the integral definition of x,,41.
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Chen-Fliess expansion for nonlinear ODEs

Theorem (Sussmann, 1983)

Let fo, f1 € C°(R™;R"™) real-analytic. Let u € L*>(0,T). For
t > 0 small enough

w0 =Y Y (/Otug>((fgl-V)---(fan-V)Id)(O),

neNge{0,1}"

where the sum converges absolutely.

Proof: Use that z(t;u,0) = (L(t)¢)(0) for ¢ :=1d and that L
solves a linear differential equation + analytic estimates for
products of first order differential operators.

Absolute convergence implies that one can obtain error estimates
with respect to ¢ and/or u by summing partial series.
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Beyond Chen-Fliess?

Recall that, when solving the formal linear differential equation for
u(t) =0, then z(t) = >, en %X&‘.
Thus

x(t) = exp(tXp)

One can indeed define exp S for any S € A(X) such that Sy = 0
as gn
exp S = Z o

neN 7’

Can we find a similar nice formula when u # 07
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Wilhelm Magnus (German)

On the exponential solution of differential equations for a linear
operator, Communications on pure and applied mathematics, 1954

Wilhelm Magnus (1907-1990),
son of Alfred,
and his son Alfred.

He considers a formal linear equation & = A(t)x and finds Q(t)
such that z(t) = exp(Q(¢)).
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Free Lie algebra

For S1,S2 € A(X), we can define the Lie bracket
[S1, 2] 1= 5152 — 5251

Then,

» L(X) := free Lie algebra over X, i.e. the smallest vector
subspace of A(X) containing X and stable by Lie bracket

» L,(X):=L(X)NA,(X) its homogeneous components. For
example L3({Xo, X1}) is spanned by [[ X7, Xo], Xo] and
[X1, [ X1, X0]]. So dim L3 = 2 whereas dim Az = 8

> L(X) denotes the series S € A(X) such that S, € £,,(X).
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Formal Magnus expansion
Consider & = x(Xo + u(t)X1).

Theorem (Strichartz, 1987)
Then x(t) = exp Z(t, X, u) where Z(t, X,u) € L(X) is defined by

+oo 7

26, xw=% Y ¥ & /
r=1m=1rteNm Te(e)

[+ [Xo + u(r) X1, Xo + u(rp—1) X1, - . ., Xo + u(r1) Xa]dr

N = {v € (N*)"™ of sum r} and T:(t) is a pyramidal domain.
Proof:
> Using an abstract criterion, prove that log z(t) € £(X).

» Using C-F, prove the above formula without brackets and 1/r.
» Apply Dynkin's theorem: S € £,(X) = S = %x bracketing.
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Magnus expansion for nonlinear ODEs

Consider & = fo(x) + ufi(2).

Theorem (= Folklore)
Let M € N. If fy, f1 are smooth, then, for small t,

z(t;u,0) = eZMGLY(0) 4 OFM )

where Zy;(t, f,u) € C°(R™;R™) is the sum Z(t, X,u) truncated
tor < M (thus a finite sum) and where we replace X; by f;.

The formula involves a time-one flow: €9,
i.e. €9(0) := y(1) where y(0) =0 and § = g(y).
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Fun facts

> If the Lie algebra generated by fy and fi is nilpotent of order
M, then
z(t;u,0) = e?MBFw) ()

and this does not require analyticity of fy, f1 (not so easy).
» If fi(z) = A;z where A; € M, (R) and
1
| Ao + u(‘)A1HL1(O7T) < 1o (harder)

then Zy/(t, A, u) converges as M — +oo.
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Lack of convergence & control estimates

There exist fy, f1,u analytic and small such that, for every ¢t > 0,

> first,
lim | Zp (¢, f,u)(0)] = 400

M—+oco

and

lim |z(¢;u,0) — eZM(t’f’“)(O)] =400
M—+o0

so even no weak convergence in the sense of the flow.

» and, the subseries within Z(t, f,u) containing fi at most
once does not converge, which prevents estimates

]ac(t) _ Some convergent subseries’ < CHqu

Really non convergent!
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Interaction picture

A classical idea in quantum mechanics when one has a Hamiltonian
H(t) = Hy + Hy(t) where Hy is well understood / solvable.

» One introduces [1)7()) := e 7ot |y (1))
> [ (t) becomes e!fo! [ (t)e~Hot

Cat planning his revenge

(© Open Culture)
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Our formal Magnus in the interaction picture expansion

Consider & = z(Xo + u(t) X1).
Then z(t) = exp(tXo) exp Z(t, X, u) where Z(t, X, u) is defined
by

u(rr) - u(m)

(=)™t (=%  (n—t)™
D!

mr o k! k1!
[+ [Mg,, M, ],..., Mg, |d7r

where My, = [Xo, [Xo, ... [Xo, X1] - ]] with k times X and the
sum is takenoverr > 1,1 <m <r,ve N" and k;,...k, € N.

Proof: Introduce y(s) := x(s)e*=9)%X0_ Then

§(s) = y(s) - eI X0u(5) X150 — y(s) Jio i t)ku(s)Mk
=
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Back to bases

Z(t,X,u) € L(X) but the previous expansion is not directly
written on a basis of £L(X), e.g. because [My, M;] = —[M;, My).
Nevertheless,

Proposition

For any “monomial” basis B of L(X), there exists functionals
Ry x L — R for b € B such that

Z(t, X, u) antu
beB

They are causal, and homogeneous.

For example, if B contains { Xy, X1, [X1, Xo|},
> nx,(t,u) =0,
> nx, (tu) = fyu
> 0 xo) (Bu) = Jo Jou



Our expansion for nonlinear ODEs

Consider & = fo(x) + ufi(2).

Theorem
Let M € N. If fy, f1 are analytic, then, for small t and u € L™,

2(t;u,0) = 2L (0(0)) + O(Jlull )

where Zy;(t, f,u) is the sum Z(t, X, u) truncated tor < M and
where we replace X by fo and X by f1 (which converges in C¥).

The formula involves the composition of two time-one flows.

Caution: As for the Magnus expansion, Zy/(t, f,u) may not
converge as M — +oo to some Z(t, f,u).

20
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From an expansion to a representation formula

Consider & = fo(z) + u(t) f1(x) with f5(0) = 0.
Theorem
If fo, f1 are analytic, then, fort and u € L*° small enough,

z(t;u,0) = Zy(t, f,u)(0) + O(J|ullyp T ) + o(|z(t; u, 0)]).
Proof: Use

» the previous formula and error estimates,
> tfo(0) =0,
» that €9(0) = ¢g(0) + O(||g|||g(0)|) for any vector field.

This was the main goal of the talk!
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Where to go from here... if you feel pessimist

z(T;u,0) = Zy(T, f,u)(0) + O(|[ul "*1) + o(|z(T;u, 0)])

Assume that you have fy, fi, M € N and T > 0 such that
Ran ('LL = ZM(T7 f7 U) (0))

is included in a half-space Ry x R"~! of R”. Then not STLC?

Proposition

Yes. Under the condition that (Zy;(T, f,u)(0),e1) > F(u) where
F' is such that the smallness assumption on the control implies
[uf M < F(w).

This is the case for all known positive results.
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Where to go from here... if you feel optimist

2(T;u,0) = Zn(T, f,1)(0) + O([[ul ™) + o(|2(T; u,0)])

Assume that you have fy, fi, M € N and T" > 0 such that

is locally onto from L to R™. Then STLC?

Proposition

Yes. Under the additional assumptions that z € R" — u, € L™
(for which Zy; (T, f,u.)(0) = z) is continuous, uy = 0 and
luzl| < |2|% for o > ﬁ

This is the case for all known positive results.
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We can work it out?

Next steps are to find bases B of the free Lie algebra over
{Xo, X1} to overcome the following difficulties
» reflect the asymmetry between X and X; (— not correctly
embedded in known Philipp-Hall bases or Lyndon bases)

» ensure the absolute convergence of Zy/ (T, f,u) (— linked
with the growth of structure constants of the free Lie algebra)

» vyield computable coefficients ny, (T, u) for b € B (— linked
with the relation between pseudo-first kind coordinates and
Sussmann’s infinite product with coordinates of the 2nd kind)

> separate “good” and "bad” brackets (— nice question, open
problem starting with L5 4(Xo, X1))
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Thank you for your attention!

To study controllability:
» Chen-Fliess is attractive but involves undesired monomials,
> Magnus is intrinsic but does not converge and only yields
error estimates in time and not in the size of the control,

» our variation
> is intrinsic (only involves Lie brackets),
P vyields error estimates in the size of the control,

» does not converge fully,
» only provides an approximate representation of the state.

One can remember, for local results,

x(T;u,0) ~ Zp (T, f,u)(0)



