Expansions for nonlinear systems, error estimates and convergence issues

joint work with Karine Beauchard and Jérémy Le Borgne

Univ Rennes, CNRS, IRMAR

June 24, 2021 - Control in Times of Crisis

Program

Talk based on arXiv:2012.15653, will cover and compare:

- the Chen-Fliess expansion,
- the Magnus expansion,
- our variation around Magnus.

Each has its advantages and drawbacks for studying controllability; no free lunch principle!

This talk skips Sussmann's infinite product expansion, which is really interesting and covered in the (long) paper.

An old question

Let $f_0, f_1 \in C^\infty(\mathbb{R}^n; \mathbb{R}^n)$, real-analytic, with $f_0(0) = 0$. Consider

$$\dot{x} = f_0(x) + u(t)f_1(x)$$

Notation x(t; u, p) for init. data $p \in \mathbb{R}^n$ and control $u \in L^{\infty}(0, T)$.

Definition (Small-time local controllability)

For every $T, \eta > 0$, there exists $\delta > 0$ such that, for every $x^* \in \mathbb{R}^n$ with $|x^*| \leq \delta$, there exists $u \in L^{\infty}(0,T)$ such that $x(T;u,0) = x^*$ and $||u||_{\infty} \leq \eta$.

Necessary and sufficient conditions on f_0, f_1 for STLC? Still open!

Definition is coordinate-invariant, so the answer must be too!

Goal of the talk: computing the final state

An essential point to study STLC is to compute x(T; u, 0)!Thus, we must solve a time-varying ODE $\dot{x} = f(t, x)$.

Also important for stochastic ODEs and numerical splitting.

Key difficulty: lack of commutativity with time variation. For example, in \mathbb{R}^2 the solution for u(t) = t to

$$\dot{x} = \begin{pmatrix} 0\\ x_2 \end{pmatrix} + u(t) \begin{pmatrix} x_2\\ 0 \end{pmatrix} = \begin{pmatrix} 0 & t\\ 0 & 1 \end{pmatrix} x = A(t)x$$

is not given by

$$\left(\exp\int_0^t A(s)ds\right)x(0).$$

Here comes the commutator

For $f, q \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$, the Lie bracket $[f, q] \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$ is $(f \cdot \nabla)q - (q \cdot \nabla)f = (Dq)f - (Df)q$ For example, with $f = \begin{pmatrix} 0 \\ x_1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 \\ x_2^2 \end{pmatrix}$, $[f,g] = \begin{pmatrix} 0 & 0 \\ 0 & 2x_2 \end{pmatrix} \begin{pmatrix} 0 \\ x_1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x_2^2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 + 2x_1x_2 \end{pmatrix}$ Or, identifying f, g with first-order differential operators $f \cdot \nabla = x_1 \partial_2$ and $q \cdot \nabla = \partial_1 + x_2^2 \partial_2$, [f, q] is identified with $[f, g] \cdot \nabla = (x_1 \partial_2)(\partial_1 + x_2^2 \partial_2) - (\partial_1 + x_2^2 \partial_2)(x_1 \partial_2)$ $= x_1\partial_{21} + 2x_1x_2\partial_2 + x_1x_2\partial_{22} - \partial_2 - x_1\partial_{12} + x_1x_2\partial_{22}$

$$= (-1 + 2x_1x_2)\partial_2$$

Sophus Lie (Norwegian)

Sophus Lie (1842-1899), mistaken for a German spy in 1870, released from prison by Darboux. Lie brackets are the best (episode 1)

Consider

$$\dot{x} = u_1(t)f_1(x) + u_2(t)f_2(x)$$

For $\varepsilon > 0$, take controls (u_1, u_2) equal to

▶ (1,0) for
$$t \in [0, \varepsilon]$$
,
▶ (0,1) on $[\varepsilon, 2\varepsilon]$,
▶ (-1,0) on $[2\varepsilon, 3\varepsilon]$,
▶ (0,-1) on $[3\varepsilon, 4\varepsilon]$.
Then

$$x(4\varepsilon; u, 0) = \varepsilon^2[f_1, f_2](0) + \mathcal{O}(\varepsilon^3)$$

One can move in more complex directions, e.g. $[f_1, [f_2, [f_2, f_1]]]$. Very important for control!

Lie brackets are the best (episode 2)

Consider $\dot{x} = f_0(x) + u(t)f_1(x)$ with $f_0(0) = 0$ and x(0) = 0.

Let ϕ be a smooth diffeomorphism $\mathbb{R}^n \to \mathbb{R}^n$ with $\phi(0) = 0$. Then $y := \phi(x)$ solves y(0) = 0 and $\dot{y} = g_0(y) + u(t)g_1(y)$ where

$$g_i(y) := (\phi_* f_i)(y) := (D\phi)_{|\phi^{-1}(y)|} f_i(\phi^{-1}(y))$$

Moreover, $[g_0, g_1] = \phi_*([f_0, f_1])$ and this holds for any Lie bracket! For a formal bracket b, we write $g_b = \phi_* f_b$. In particular, there exists a matrix $L \in GL_n(\mathbb{R})$, $L = D\phi_{|0}$ such that

$$\forall b, \quad g_b(0) = L f_b(0)$$

For example,

$$[[g_1, g_0], [[g_1, g_0], g_0]](0) = L[[f_1, f_0], [[f_1, f_0], f_0]](0)$$

Lie brackets are the best (episode 3)

Consider $\dot{x} = f_0(x) + u(t)f_1(x)$ with $f_0(0) = 0$ and x(0) = 0. Consider $\dot{y} = g_0(y) + u(t)g_1(y)$ with $g_0(0) = 0$ and y(0) = 0.

Theorem (Krener, 1973)

Assume that there exists $L \in GL_n(\mathbb{R})$ such that

$$\forall b, \quad g_b(0) = L f_b(0).$$

Then there exists a (local) diffeomorphism ϕ from $\mathbb{R}^n \to \mathbb{R}^n$ with $\phi(0) = 0$ such that, for all $u \in L^{\infty}$ and t small enough,

$$y(t; u, 0) = \phi(x(t; u, 0)).$$

Important consequence: STLC can only depend on $\{f_b(0); b\}$.

Goal of the talk (revisited)

Consider $\dot{x} = f_0(x) + u(t)f_1(x)$ with $f_0(0) = 0$ and x(0) = 0.

Goal: Find a formula for x(T; u, 0) for T small enough which depends only on the vectors $f_b(0) \in \mathbb{R}^n$, so on

•
$$f_1(0)$$
 ($f_0(0) = 0$ is useless),

$$\blacktriangleright [f_0, f_1](0),$$

▶ ...

►
$$[f_1, [f_0, f_1]](0)$$
,

Classical approach from an analyst's point of view: find an asymptotic expansion with respect to a small parameter, e.g. $T \ll 1$ or $||u||_{\infty} \ll 1$.

A best-seller: the Chen-Fliess expansion

Very widely used in the control theory community to prove necessary conditions for STLC.

- Sussmann, 1983. First quadratic obstruction.
- Stefani, 1986. Strongest obstruction at each even order.
- ► Kawski, 1987. Second quadratic obstruction.
- ▶ Giraldi, Lissy, Moreau, Pomet, 2019. 2-controls obstruction.

A best-seller: the Chen-Fliess expansion

Could also be called *iterated Duhamel expansion* (in time). Consider $\dot{x} = f_0(x) + u(t)f_1(x)$ with x(0) = 0.

• Order 1: Since $x(t) \approx 0$, $\dot{x}(t) \approx f_0(0) + u(t)f_1(0)$ so

$$x(t) \approx x^{1}(t) := tf_{0}(0) + (\int_{0}^{t} u)f_{1}(0)$$

• Order 2: Hence $\dot{x}(t) \approx f_0(x^1) + u(t)f_1(x^1)$ so

$$\begin{aligned} x(t) &\approx t f_0(0) + (\int_0^t u) f_1(0) \\ &+ \frac{t^2}{2} (f_0 \cdot \nabla) f_0(0) + (\int_0^t \int_0^s u) (f_0 \cdot \nabla) f_1(0) \\ &+ (\int_0^t s u(s)) (f_0 \cdot \nabla) f_1(0) + (\int_0^t u(s) \int_0^s u) (f_1 \cdot \nabla) f_1(0). \end{aligned}$$

Involves non-intrinsic quantities such as $(f_1 \cdot \nabla) f_1(0)$!

Why it is so widely used?

- It is easy to derive. Few algebraic prerequisites.
- It comes with nice explicit expressions (functionals of u) of the scalar coefficients in front of the involved vectors.
- It converges locally in time for analytic vector fields.

But ... it does not depend solely on the $\{f_b(0)\}$. So, to obtain control results, each author must work to reconstruct the Lie brackets and hide the undesired terms.

So we look for something else!

Lossless linearization?

Usually,

nonlinear problem \approx linearized problem in the same space $$+$\,small$$ remainder

Here, we use another version

 $\label{eq:nonlinear problem} \begin{array}{l} \mbox{nonlinear problem} = \mbox{linearized problem in a larger space} \\ + \mbox{nothing} \end{array}$

Linearization trick

Consider $\dot{x} = f_0(x) + u(t)f_1(x)$, which is a nonlinear problem.

Define the zero-order operator

$$L(t): \begin{cases} C^{\infty}(\mathbb{R}^n; \mathbb{R}) \to C^{\infty}(\mathbb{R}^n; \mathbb{R}) \\ \varphi \mapsto (p \mapsto \varphi(x(t; u, p))) \end{cases}$$

Then, $\forall \varphi \in C^\infty(\mathbb{R}^n;\mathbb{R})$, $\forall p \in \mathbb{R}^n$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(L(t)\varphi)(p) = D\varphi(x(t;u,p))\left(f_0(x(t;u,p)) + u(t)f_1(x(t;u,p))\right)$$
$$= (L(t)(f_0 \cdot \nabla + u(t)f_1 \cdot \nabla)\varphi)(p)$$

So, in the weak-weak sense, $\dot{L}(t) = L(t)(f_0 \cdot \nabla + u(t)f_1 \cdot \nabla)$. We are solving a linear differential equation in $Op(C^{\infty}(\mathbb{R}^n; \mathbb{R}))$.

Welcome to algebra

Let $X := \{X_0, X_1\}$ be non-commutative indeterminates.

Let $\mathcal{A}(X)$ the free algebra over X, i.e. the vector space of non-commutative polynomials of X_0, X_1 . For example $1 + 7X_0 + (3X_0X_1 + 2X_1X_0) + 42X_1^3 \in \mathcal{A}(X)$. $\mathcal{A}(X) = \bigoplus_{n \in \mathbb{N}} \mathcal{A}_n(X)$ (spanned by monomials of degree n).

Let $\widehat{\mathcal{A}}(X)$ the formal series generated by $\mathcal{A}(X)$, i.e. sequences $(a_n)_{n\in\mathbb{N}}$ with $a_n\in\mathcal{A}_n(X)$. Notation $a=\sum_{n\in\mathbb{N}}a_n$. For example

$$\left(\sum_{n\in\mathbb{N}}n^nX_0^n + e^{n^3}X_1^n\right)\in\widehat{\mathcal{A}}(X)$$

No¹ convergence issue!

¹Always read the small notes

Formal linear differential equations

Let T > 0 and $u \in L^{\infty}(0,T)$. Consider the formal differential equation in $\widehat{\mathcal{A}}(X)$

$$\begin{cases} \dot{x}(t) = x(t)(X_0 + u(t)X_1), \\ x(0) = 1. \end{cases}$$

Definition

The solution to this formal equation is the formal-series valued function $x: [0,T] \to \widehat{\mathcal{A}}(X)$ whose homogeneous components $x_n: [0,T] \to \mathcal{A}_n(X)$ are given by $x_0(t) = 1$ and

$$x_{n+1}(t) = \int_0^t x_n(s)(X_0 + u(s)X_1) \mathrm{d}s.$$

If
$$u(t) = 7t$$
, then $x_0(t) = 1$, $x_1(t) = tX_0 + \frac{7t^2}{2}X_1$, ...
If $u(t) = 0$, then $x(t) = \sum_{n \in \mathbb{N}} \frac{t^n}{n!} X_0^n$

Formal Chen-Fliess expansion

Theorem (Classical)

$$x(t) = \sum_{n \in \mathbb{N}} \sum_{\sigma \in \{0,1\}^n} \left(\int_0^t u_\sigma \right) X_{\sigma_1} \cdots X_{\sigma_n},$$

where

$$\int_0^t u_\sigma := \int_{0 < \tau_1 < \cdots < \tau_n < t} u_{\sigma_1}(\tau_1) \cdots u_{\sigma_n}(\tau_n) \mathrm{d}\tau$$

with $u_0 := 1$ and $u_1 := u$.

Proof: Use the integral definition of x_{n+1} .

Chen-Fliess expansion for nonlinear ODEs

Theorem (Sussmann, 1983)

Let $f_0, f_1 \in C^\infty(\mathbb{R}^n; \mathbb{R}^n)$ real-analytic. Let $u \in L^\infty(0, T)$. For t > 0 small enough

$$x(t; u, 0) = \sum_{n \in \mathbb{N}} \sum_{\sigma \in \{0,1\}^n} \left(\int_0^t u_\sigma \right) \left((f_{\sigma_1} \cdot \nabla) \cdots (f_{\sigma_n} \cdot \nabla) \mathrm{Id} \right) (0),$$

where the sum converges absolutely.

Proof: Use that $x(t; u, 0) = (L(t)\varphi)(0)$ for $\varphi := \text{Id}$ and that L solves a linear differential equation + analytic estimates for products of first order differential operators.

Absolute convergence implies that one can obtain error estimates with respect to t and/or u by summing partial series.

Beyond Chen-Fliess?

Recall that, when solving the formal linear differential equation for u(t)=0, then $x(t)=\sum_{n\in\mathbb{N}}\frac{t^n}{n!}X_0^n.$ Thus

$$x(t) = \exp(tX_0)$$

One can indeed define $\exp S$ for any $S\in \widehat{\mathcal{A}}(X)$ such that $S_0=0$ as

$$\exp S := \sum_{n \in \mathbb{N}} \frac{S^n}{n!}$$

Can we find a similar nice formula when $u \neq 0$?

Wilhelm Magnus (German)

On the exponential solution of differential equations for a linear operator, *Communications on pure and applied mathematics*, 1954

Wilhelm Magnus (1907-1990), son of Alfred, and his son Alfred.

He considers a formal linear equation $\dot{x} = A(t)x$ and finds $\Omega(t)$ such that $x(t) = \exp(\Omega(t))$.

Free Lie algebra

For $S_1, S_2 \in \mathcal{A}(X)$, we can define the Lie bracket

$$[S_1, S_2] := S_1 S_2 - S_2 S_1$$

Then,

- ► L(X) := free Lie algebra over X, i.e. the smallest vector subspace of A(X) containing X and stable by Lie bracket
- $\mathcal{L}_n(X) := \mathcal{L}(X) \cap \mathcal{A}_n(X)$ its homogeneous components. For example $\mathcal{L}_3(\{X_0, X_1\})$ is spanned by $[[X_1, X_0], X_0]$ and $[X_1, [X_1, X_0]]$. So dim $\mathcal{L}_3 = 2$ whereas dim $\mathcal{A}_3 = 8$
- $\widehat{\mathcal{L}}(X)$ denotes the series $S \in \widehat{\mathcal{A}}(X)$ such that $S_n \in \mathcal{L}_n(X)$.

Formal Magnus expansion

Consider
$$\dot{x} = x(X_0 + u(t)X_1)$$
.

Theorem (Strichartz, 1987)

Then $x(t) = \exp Z(t, X, u)$ where $Z(t, X, u) \in \widehat{\mathcal{L}}(X)$ is defined by

$$Z(t, X, u) := \sum_{r=1}^{+\infty} \sum_{m=1}^{r} \sum_{\mathfrak{r} \in \mathbb{N}_r^m} \frac{(-1)^{m-1}}{mr} \int_{\mathcal{T}_{\mathfrak{r}(t)}} [\cdots [X_0 + u(\tau_r)X_1, X_0 + u(\tau_{r-1})X_1], \dots, X_0 + u(\tau_1)X_1] d\tau$$
$$\mathbb{N}_r^m := \{\mathfrak{r} \in (\mathbb{N}^*)^m \text{ of sum } r\} \text{ and } \mathcal{T}_{\mathfrak{r}}(t) \text{ is a pyramidal domain.}$$

Proof:

- Using an abstract criterion, prove that $\log x(t) \in \widehat{\mathcal{L}}(X)$.
- Using C-F, prove the above formula without brackets and 1/r.
- Apply Dynkin's theorem: $S \in \mathcal{L}_r(X) \Rightarrow S = \frac{1}{r} \times$ bracketing.

Magnus expansion for nonlinear ODEs

Consider
$$\dot{x} = f_0(x) + u f_1(x)$$
.

Theorem (\approx Folklore)

Let $M \in \mathbb{N}$. If f_0, f_1 are smooth, then, for small t,

$$x(t; u, 0) = e^{Z_M(t, f, u)}(0) + \mathcal{O}(t^{M+1})$$

where $Z_M(t, f, u) \in C^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$ is the sum Z(t, X, u) truncated to $r \leq M$ (thus a finite sum) and where we replace X_i by f_i .

The formula involves a time-one flow: e^g , i.e. $e^g(0) := y(1)$ where y(0) = 0 and $\dot{y} = g(y)$.

Fun facts

If the Lie algebra generated by f₀ and f₁ is nilpotent of order M, then

$$x(t; u, 0) = e^{Z_M(t, f, u)}(0)$$

and this does not require analyticity of f_0 , f_1 (not so easy).

• If
$$f_i(x) = A_i x$$
 where $A_i \in \mathcal{M}_n(\mathbb{R})$ and
 $\|A_0 + u(\cdot)A_1\|_{L^1(0,T)} < \frac{1}{4}$ or π (harder)

then $Z_M(t, A, u)$ converges as $M \to +\infty$.

Lack of convergence & control estimates

There exist f_0, f_1, u analytic and small such that, for every t > 0, First,

$$\lim_{M \to +\infty} |Z_M(t, f, u)(0)| = +\infty$$

and

$$\lim_{M \to +\infty} |x(t; u, 0) - e^{Z_M(t, f, u)}(0)| = +\infty$$

so even no weak convergence in the sense of the flow.

and, the subseries within Z(t, f, u) containing f₁ at most once does not converge, which prevents estimates

$$|x(t) - e^{\text{some convergent subseries}}| \le C ||u||^k$$

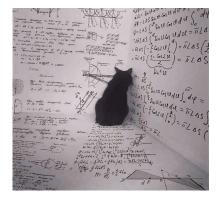
Really non convergent!

Interaction picture

A classical idea in quantum mechanics when one has a Hamiltonian $H(t)=H_0+H_1(t)$ where H_0 is well understood / solvable.

• One introduces $|\psi_I(t)\rangle := e^{-iH_0t}|\psi(t)\rangle$

•
$$H(t)$$
 becomes $e^{iH_0t}H_1(t)e^{-iH_0t}$



Cat planning his revenge

(© Open Culture)

Our formal Magnus in the interaction picture expansion Consider $\dot{x} = x(X_0 + u(t)X_1)$.

Theorem

Then $x(t) = \exp(tX_0) \exp \mathcal{Z}(t, X, u)$ where $\mathcal{Z}(t, X, u)$ is defined by

$$\sum \frac{(-1)^{m-1}}{mr} \int_{\mathcal{T}_{\mathfrak{r}(t)}} \frac{(\tau_r - t)^{k_r}}{k_r!} \cdots \frac{(\tau_1 - t)^{k_1}}{k_1!} u(\tau_r) \cdots u(\tau_1)$$
$$[\cdots [M_{k_r}, M_{k_{r-1}}], \dots, M_{k_1}] d\tau$$

where $M_k = [X_0, [X_0, \dots, [X_0, X_1] \cdots]]$ with k times X_0 and the sum is taken over $r \ge 1$, $1 \le m \le r$, $\mathfrak{r} \in \mathbb{N}_r^m$ and $k_1, \dots, k_r \in \mathbb{N}$.

Proof: Introduce $y(s) := x(s)e^{(t-s)X_0}$. Then

$$\dot{y}(s) = y(s) \cdot e^{-(t-s)X_0} u(s) X_1 e^{(t-s)X_0} = y(s) \cdot \sum_{k=0}^{+\infty} \frac{(s-t)^k}{k!} u(s) M_k$$

Back to bases

 $\mathcal{Z}(t,X,u)\in \widehat{\mathcal{L}}(X)$ but the previous expansion is not directly written on a basis of $\widehat{\mathcal{L}}(X)$, e.g. because $[M_0,M_1]=-[M_1,M_0].$ Nevertheless,

Proposition

For any "monomial" basis \mathcal{B} of $\mathcal{L}(X)$, there exists functionals $\eta_b : \mathbb{R}_+ \times L^{\infty} \to \mathbb{R}$ for $b \in \mathcal{B}$ such that

$$\mathcal{Z}(t, X, u) = \sum_{b \in \mathcal{B}} \eta_b(t, u) b$$

They are causal, and homogeneous. For example, if \mathcal{B} contains $\{X_0, X_1, [X_1, X_0]\}$,

Our expansion for nonlinear ODEs

Consider
$$\dot{x} = f_0(x) + u f_1(x)$$
.

Theorem

Let $M \in \mathbb{N}$. If f_0, f_1 are analytic, then, for small t and $u \in L^{\infty}$,

$$x(t; u, 0) = e^{\mathcal{Z}_M(t, f, u)}(e^{tf_0}(0)) + \mathcal{O}(\|u\|_{W^{-1, \infty}}^{M+1})$$

where $\mathcal{Z}_M(t, f, u)$ is the sum $\mathcal{Z}(t, X, u)$ truncated to $r \leq M$ and where we replace X_0 by f_0 and X_1 by f_1 (which converges in C^{ω}).

The formula involves the composition of two time-one flows.

Caution: As for the Magnus expansion, $\mathcal{Z}_M(t, f, u)$ may not converge as $M \to +\infty$ to some $\mathcal{Z}(t, f, u)$.

From an expansion to a representation formula

Consider
$$\dot{x} = f_0(x) + u(t)f_1(x)$$
 with $f_0(0) = 0$.

Theorem

If f_0, f_1 are analytic, then, for t and $u \in L^{\infty}$ small enough,

$$x(t; u, 0) = \mathcal{Z}_M(t, f, u)(0) + \mathcal{O}(\|u\|_{W^{-1,\infty}}^{M+1}) + o(|x(t; u, 0)|).$$

Proof: Use

the previous formula and error estimates,

•
$$e^{tf_0}(0) = 0$$
,

▶ that $e^g(0) = g(0) + O(||g|||g(0)|)$ for any vector field.

This was the main goal of the talk!

Where to go from here... if you feel pessimist

$$x(T; u, 0) = \mathcal{Z}_M(T, f, u)(0) + \mathcal{O}(||u||^{M+1}) + o(|x(T; u, 0)|)$$

Assume that you have $f_0, f_1, M \in \mathbb{N}$ and T > 0 such that

$$\operatorname{Ran}\left(u\mapsto\mathcal{Z}_M(T,f,u)(0)\right)$$

is included in a half-space $\mathbb{R}_+ \times \mathbb{R}^{n-1}$ of \mathbb{R}^n . Then not STLC?

Proposition

Yes. Under the condition that $\langle \mathcal{Z}_M(T, f, u)(0), e_1 \rangle \geq F(u)$ where F is such that the smallness assumption on the control implies $||u||^{M+1} \ll F(u)$.

This is the case for all known positive results.

Where to go from here... if you feel optimist

$$x(T; u, 0) = \mathcal{Z}_M(T, f, u)(0) + \mathcal{O}(||u||^{M+1}) + o(|x(T; u, 0)|)$$

Assume that you have $f_0, f_1, M \in \mathbb{N}$ and T > 0 such that

 $u \mapsto \mathcal{Z}_M(T, f, u)(0)$

is locally onto from L^{∞} to \mathbb{R}^n . Then STLC?

Proposition

Yes. Under the additional assumptions that $z \in \mathbb{R}^n \mapsto u_z \in L^{\infty}$ (for which $\mathcal{Z}_M(T, f, u_z)(0) = z$) is continuous, $u_0 = 0$ and $||u_z|| \leq |z|^{\alpha}$ for $\alpha > \frac{1}{M+1}$.

This is the case for all known positive results.

We can work it out?

Next steps are to find bases \mathcal{B} of the free Lie algebra over $\{X_0, X_1\}$ to overcome the following difficulties

- ▶ reflect the asymmetry between X_0 and X_1 (\rightarrow not correctly embedded in known Philipp-Hall bases or Lyndon bases)
- ensure the absolute convergence of $\mathcal{Z}_M(T, f, u)$ (\rightarrow linked with the growth of structure constants of the free Lie algebra)
- ▶ yield computable coefficients $\eta_b(T, u)$ for $b \in \mathcal{B}$ (→ linked with the relation between pseudo-first kind coordinates and Sussmann's infinite product with coordinates of the 2nd kind)
- Separate "good" and "bad" brackets (→ nice question, open problem starting with L_{5,4}(X₀, X₁))

Thank you for your attention!

To study controllability:

- Chen-Fliess is attractive but involves undesired monomials,
- Magnus is intrinsic but does not converge and only yields error estimates in time and not in the size of the control,
- our variation
 - is intrinsic (only involves Lie brackets),
 - yields error estimates in the size of the control,
 - does not converge fully,
 - only provides an approximate representation of the state.

One can remember, for local results,

$$x(T; u, 0) \approx \mathcal{Z}_M(T, f, u)(0)$$