Some control results for Stokes equations with memory

José Lucas Ferreira Machado

Federal Institute of Education, Science and Technology of Ceará - IFCE

Joint work with E. Fernández-Cara* & D. A. Souza*

* Dpto. E.D.A.N. - Univ. of Sevilla

Online seminar: Control in Times of Crisis

December 8, 2020

Introdution

2 Non null controllability of the Stokes system with memory

3 Additional results and comments

・ロト ・回ト ・ヨト ・

Introdution

2 Non null controllability of the Stokes system with memory

3 Additional results and comments

・ロト ・回ト ・ヨト ・ヨ

System with nonlocal in time (memory) term:

$$\begin{cases} u_t - \Delta u - b \int_0^t e^{-a(t-s)} \Delta u(\cdot, s) \, ds + \nabla p = 0, \\ \nabla \cdot u = 0 \end{cases}$$

Figure: Saliva

Figure: Honey

メロト メポト メヨト メヨト

Control systems are those whose behavior can be influenced by the action of an additional variable (the control).

$$\begin{cases} u_t = Au + B\mathbf{v}, \\ u(0) = u_0 + B.C \end{cases}$$

where $\boldsymbol{u} : [0, T] \mapsto \mathcal{H}$ is the *state* and $\boldsymbol{v} \in \mathcal{U}$ is the *control*.

• Exact controllability (EC) at time T:

For any u_0 , $u_T \in \mathcal{H}$, find $v \in \mathcal{U}$ such that $u(T) = u_T$.

• Null controllability (NC) at time T:

For any $u_0 \in \mathcal{H}$, find $v \in \mathcal{U}$ such that u(T) = 0.

• Approximate-finite dimensional controllability (A-FD) at time T:

For any u_0 , $u_T \in \mathcal{H}$, any finite dimensional space $M \subset \mathcal{H}$ and for every $\varepsilon > 0$, find $v \in \mathcal{U}$ such that $\|u(T) - u_T\|_{\mathcal{H}} \le \varepsilon$ and $P_M(u(T)) = P_M(u_T)$.

<ロ> (日) (日) (日) (日) (日)

Model nonlinear system:

$$\begin{cases} \partial_t u - \nu \Delta u + (u \cdot \nabla) u + \nabla p = \nabla \cdot \tau + \mathbf{v} \mathbf{1}_{\omega} & \text{in} \quad Q, \\ \partial_t \tau + (u \cdot \nabla) \tau + g(\nabla u, \tau) + a\tau = 2bDu & \text{in} \quad Q, \\ \nabla \cdot u = 0 & \text{on} \quad Q, \\ u = 0 & \text{on} \quad \Sigma, \end{cases}$$

$$u=0$$
 on Σ ,

$$u(0) = u_0, \quad \tau(0) = \tau_0 \qquad \qquad \text{on} \quad \Omega.$$

Here, (u, τ) is the state, v is the control and

$$g(
abla u, au):= au$$
 $Wu-Wu au-k(Du au+ au Du)$ and $k\in [-1,1].$

- it models a non-Newtonian homogeneous fluid with memory.
- More difficult to solve than NS ($\tau \equiv 0$).
- Much more complicate: \exists global weak solution? (known for k = 0)

[Guillopé-Saut, 1990; PL Lions-Masmoudi, 2000; EFC et al., 2002; ···]

イロト イヨト イヨト イヨト

Linearized viscoelastic Jeffreys fluids (Stokes + memory)

$$v \quad u_t - \nu \Delta u + \nabla p = \nabla \cdot \tau + v \mathbf{1}_{\omega}, \quad \nabla \cdot u = 0 \quad \text{in} \quad Q,$$

$$\partial \tau + a\tau = 2bDu$$
 in Q ,

$$u=0$$
 on Σ ,

$$\mathbf{U} \quad u(0) = u_0, \quad \tau(0) = \tau_0 \qquad \qquad \text{in} \quad \Omega,$$

where a, b > 0. Rewritten as an integro-differential equation:

(S)
$$\begin{cases} u_t - \nu \Delta u - b \int_0^t e^{-a(t-s)} \Delta u(s) ds + \nabla p = e^{-at} \nabla \cdot \tau_0 + \nu \mathbf{1}_{\omega}, & \text{in } Q, \\ \nabla \cdot u = 0 & \text{on } Q, \\ u = 0 & \text{on } \Sigma, \end{cases}$$

$$\int u(0) = u_0 \qquad \qquad \text{in } \Omega$$

・ロト ・回ト ・ヨト ・ヨト

Theorem (Doubova, Fernández-Cara, 2012)

 $\forall \ \omega \subset \Omega$, (S) is Approximately-FD at any time T > 0.

- Same result for boundary controls $v1_{\gamma}$ on $\gamma \times (0, T) \subset \Sigma$.
- Equivalent to unique continuation property for adjoint problem.

メロト メロト メヨト メ

When $\nu = 0$ (only elasticity) in (S) we have a *linear Maxwell fluids*.

Theorem (Boldrini, et al 2012)

Let $\nu = 0$. For suitable large ω , (S) is exact controllable for large time.

• When b = 0 (only viscosity) then (S) is the well-known *Stokes system*, that is NC.

イロト イヨト イヨト イヨ

Simplified case: Heat instead of Stokes

(H)
$$\begin{cases} \partial_t y - \Delta y - b \int_0^t e^{-a(t-s)} \Delta y(s) ds = 0 & \text{in } Q, \\ y = v \mathbf{1}_\gamma & \text{on } \Sigma, \\ y(0) = y_0, \quad \tau(0) = 0 & \text{on } \Omega. \end{cases}$$

Theorem (Guerrero, Imanuvilov, 2013)

Let T > 0 and $\gamma \subset \partial \Omega$. $\exists u_0 \in L^2(\Omega)$ such that $u(T) \not\equiv 0, \forall v$.

• Same result for distributed controls $v1_{\omega}$, where $\overline{\omega} \subset \Omega$.

・ロト ・回ト ・ヨト

Question: Null controllability

Let us take $\tau_0 = 0$ in (S). Is there a control v such that u(T) = 0?

・ロト ・回ト ・ヨト ・

Introdution

2 Non null controllability of the Stokes system with memory

3 Additional results and comments

・ロト ・回ト ・ヨト ・ヨ

The null controllability of system (S) does not hold for n = 2, 3. Consider the similar boundary controlled problem

$$\begin{array}{ll} & u_t - \Delta u - b \int_0^t e^{-a(t-s)} \Delta u(s) ds + \nabla p = 0 & \text{ in } Q, \\ & \nabla \cdot u = 0 & \text{ on } Q, \\ & u = \mathbf{v} & \text{ on } \Sigma, \\ & u(0) = u_0 & \text{ on } \Omega. \end{array}$$

Theorem (Fernández-Cara, Machado, Souza, 2020)

 $\exists u_0 \in H$ such that $\forall v \in L^2(\Sigma)^n$ the solution u to above system satisfies

 $u(T) \neq 0.$

イロト イヨト イヨト イヨ

Non null controllability of the Stokes system with memory

Sketch of the proof: (Inspired by [Guerrero-Imanuvilov, 2013])

- Take Ω as a ball $\Omega = B(0; R)$. Not restrictive
- NC is equivalent to observability

$$\|\varphi(\cdot,0)\|^2 \leq C \iint_{\Sigma} \left| \left(-q \operatorname{Id} + \nabla \varphi + b \int_{t}^{T} e^{-a(s-t)} \nabla \varphi(\cdot,s) \, ds \right) \cdot \nu \right|^2 d\Gamma dt, \quad \forall \varphi_T \in H$$

where φ is solution to

$$\int_{t} -\varphi_{t} - \Delta \varphi - b \int_{t}^{T} e^{-a(s-t)} \Delta \varphi(\cdot, s) \, ds + \nabla q = 0 \quad \text{in} \quad Q,$$

$$\begin{cases} \nabla \cdot \varphi = 0 & \text{in } Q, \\ \varphi = 0 & \text{on } \Sigma, \end{cases}$$

$$\varphi(\cdot, T) = \varphi_T$$
 in Ω .

A D > A B > A B >

• n=3;

• (φ_k, q_k) : eigenfunctions; λ_k : eigenvalues of the Stokes operator with

$$\begin{cases} \varphi_k(x, y, z) = \frac{1}{\lambda_k^{1/2} r^2} \left(\cos(\lambda_k^{1/2} r) - \frac{1}{\lambda_k^{1/2} r} \sin(\lambda_k^{1/2} r) \right) (y - z, z - x, x - y), \\ q_k \equiv 0, \\ \lambda_k = \frac{\pi^2}{R^2} (k + 1/2)^2 - \varepsilon_k, & \text{for some} \quad \varepsilon_k > 0 \quad \text{satisfying} \quad \varepsilon_k \to 0. \end{cases}$$

• Estimates for φ_k :

$$\|\varphi_k\|^2 \ge \frac{2\pi R}{\lambda_k},$$
$$\frac{\partial \varphi_k}{\partial \nu}\Big|_{\partial \Omega} = -\frac{\sin(\lambda_k^{1/2} R)}{R^2} (y - z, z - x, x - y).$$

・ロト ・回ト ・ヨト ・

• Set
$$\varphi_T := \sum_{k \ge 1} \beta_k \varphi_k$$

• Then:
$$\varphi(\cdot,t) = \sum_{k>1} \alpha_k(t) \varphi_k, \quad q \equiv 0, \quad \forall t \in (0,T),$$

$$\begin{cases} \alpha_k(t) \equiv 0 \quad \forall k < k_0, \\ \alpha_k(t) \equiv C_{1,k} e^{\mu_k^+(T-t)} + C_{2,k} e^{\mu_k^-(T-t)} \quad \forall k \ge k_0, \end{cases}$$

where $\mu_k^+ \to -\infty$ and $\mu_k^- \to -(a+b)$.

• $\beta_k = 0$, for $k \neq 8M + \ell$ with $1 \leq \ell \leq 8$

・ロト ・回ト ・ヨト

GOAL: to construct, for *M* large, a sequence of solutions $\{\varphi^M\}$ such that:

$$(\star) \qquad \qquad \frac{C_0}{M^6} \le \|\varphi^M(0)\|^2 \quad \text{and} \quad \iint_{\Sigma} \left|\frac{\partial \varphi^M}{\partial \nu}\right|^2 d\sigma dt \le \frac{C_1}{M^{10}},$$

for some C_0 , $C_1 > 0$ independent of M.

• Large $M \Longrightarrow$ Observability cannot hold.

・ロト ・日子・ ・ ヨト

Idea of the demonstration: estimate

The estimates from above

$$\iint_{\Sigma} e^{2(a+b)(T-t)} \left| \frac{\partial \varphi^M}{\partial \nu} \right|^2 d\,\Gamma\,dt \le A_1 + A_2$$

Lemma

There exists C > 0 such that, for M large enough, one has

$$A_{1} := 96\pi R^{2} \int_{0}^{T} \left(\sum_{M} \gamma_{k} C_{1,k} e^{(a+b+\mu_{k}^{+})(T-t)} \right)^{2} dt \leq \frac{C}{M^{10}},$$

Integrating by parts ten times

$$A_{1} = \sum_{j=0}^{9} E_{1,j,M} g_{M}^{(j)}(0) - E_{2,j,M} g_{M}^{(j)}(T) + \int_{0}^{T} E_{M}(t) g_{M}^{(10)}(t) dt.$$
$$g_{M}^{(0)}(T) = g_{M}^{(1)}(T) = \dots = g_{M}^{(8)}(T) = g_{M}^{(9)}(T) = 0.$$

Homogeneous system, with 5 linear equations and 8 unknowns $C_{1,8M+\ell}$ (or β_k).

Lucas Machado (IFCE)

Idea of the demonstration: estimate

Lemma

There exists C > 0 such that, for M large enough, one has

$$A_{2} := 96\pi R^{2} \int_{0}^{T} \left(\sum_{M} \gamma_{k} C_{2,k} e^{(a+b+\mu_{k}^{-})(T-t)} \right)^{2} dt \leq \frac{C}{M^{12}},$$

Expanding

$$\gamma_k C_{2,k} e^{(a+b+\mu_k^-)(T-t)} = \beta_k \left[E_{1,k} + E_{2,k}(T-t) + \mathcal{O}(\lambda_k^{-3}) \right]$$
$$\sum_M \beta_k E_{1,k} = 0 \quad \text{and} \quad \sum_M \beta_k E_{2,k} = 0$$

Homogeneous system, with 7 linear equations and 8 unknowns β_k .

It is possible to choose a nontrivial solution bounded independently of M.

A D > A B > A B >

Idea of the demonstration: estimate

The estimates from below

Lemma

There exists C > 0 such that, for M large enough, one has

$$\|arphi^M(0)\|^2 \geq rac{C}{M^6}$$

$$\|\varphi(\cdot,0)\|^{2} = \sum_{k \ge k_{0}} (C_{1,k} e^{\mu_{k}^{+}T} + C_{2,k} e^{\mu_{k}^{-}T})^{2} \|\varphi_{k}\|^{2} \ge C \sum_{M} \frac{1}{\lambda_{k}} \left(\frac{3}{4} C_{2,k}^{2} e^{2\mu_{k}^{-}T} - 3C_{1,k}^{2} e^{2\mu_{k}^{+}T}\right).$$

- $C_{2,k} \approx \mathcal{O}(\lambda_k^{-1})$
- $\mu_k^-
 ightarrow -(a+b)$
- $C_{1,8M+\ell}^2 e^{2\mu_{8M+\ell}^+ T} \leq C e^{-CM^2 T} \quad \forall \ell = 1,\ldots,8$

・ロト ・回ト ・ヨト ・ヨト

Idea of the demonstration: construction of the initial condition

Construction of the initial condition

We define

$$\mu_0 = \sum_{j \ge 1} \frac{1}{j^{3/4}} \frac{\varphi_{8j+\ell_0}}{\|\varphi_{8j+\ell_0}\|}.$$

By contradiction, let $v \in L^2(\Sigma)$ be such that $u(T, \cdot) = 0$.

$$\underbrace{-\int_{\Omega} u_{0}\varphi^{M}(0)}_{X_{1}} + \underbrace{\int_{\Sigma} v \frac{\partial \varphi^{M}}{\partial \nu} + b \int_{0}^{T} \int_{0}^{t} e^{-a(t-s)} \left(\int_{\partial \Omega} v(s) \frac{\partial \varphi^{M}}{\partial \nu}(t)\right) dsdt}_{X_{2}} = 0$$

From (*)

$$|X_1| \geq rac{C_0}{M^{15/4}}$$
 and $|X_2| \leq rac{C}{M^5}$

Taking M large enough we have a contradiction.

(日) (同) (日) (日)

Corollary

Same result for distributed controls $v1_{\omega}$, where $\omega \subset \Omega$ is a non-empty open set with $\Omega \setminus \overline{\omega} \neq \emptyset$:

NC is true $\forall \ \omega$ and $\forall \ u_0 \implies$ Contradiction

Remark

Theorem and Corollary still hold if we replace the integral (memory) term by

$$\int_0^t e^{-a(t-s)} u(\cdot,s) \, ds$$

・ロト ・回ト ・ ヨト

Additional results and comments

-

・ロト ・回ト ・ヨト ・

• For two-dimensional (n = 2) case the proof is similar.

$$\varphi_k(x,y) = \frac{J_1(\lambda_k^{1/2}r)}{\lambda_k^{1/2}r}(-y,x) \qquad q_k \equiv 0 \qquad \lambda_k^{1/2}R = j_{1,k},$$

where J_1 is the first order Bessel function of the first kind and $j_{1,k}$ its k-th positive root.

- Using n-1 controls, AC in u is true. n = 3, using only one control? In general, NO! $\Omega = B(0; R) \times (0, L)$.
- Oseen equation with memory?

$$\begin{cases} u_t + (z \cdot \nabla)u - \Delta u - b \int_0^t e^{-a(t-s)} \Delta u(s) ds + \nabla p = 0 \\ \nabla \cdot u = 0 \\ etc. \end{cases}$$

• Is it possible to use moving controls for Stokes with memory? In [Chaves-Silva, Rosier, Zuazua, 2014] NC of a simplified similar system, with $\omega = \omega(t)$.

Lucas Machado (IFCE)

References

- A. DOUBOVA, E. FERNÁNDEZ-CARA, On the control of viscoelastic Jeffreys fluids, Systems & Control Letters 61 (2012), no. 4, 573–579.
- S. GUERRERO, O.Y. IMANUVILOV, *Remarks on non controllability of the heat equation with memory*, ESAIM **19** (2013), no. 1, 288–300.
 - E. FERNÁNDEZ-CARA, J. L. F. MACHADO, D. A. SOUZA, Non null controllability of Stokes equations with memory, ESAIM: COCV 26 (2020), 72.

Thank you very much!

メロト メロト メヨト