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Introduction

What is insensitizing control?

A way to treat uncertainty of measurements for PDE with partially
unknown data (initial/boundary conditions, coefficients of the equation,
domain...).

Global spirit

Consider yh
p solution of a controlled PDE, with control h, depending

on an unknown parameter p.
We are given a functional of observation Jh(p) = Φ(yh

p ), that is
differentiable in p for any h.
Goal: find a control h such that the functional is not too sensitive to
small variations of p.
More precisely: given a family of perturbations pτ of a reference
parameter p0, (τ > 0 small), find a control h such that

∂τJh(pτ )|τ=0 = 0.
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Introduction

(Partial) state of the art

Initiated by J.-L. Lions’89. Mainly studied for perturbations of the initial
condition.
Approximate insensitizing for the semilinear heat equation (SHE):
Bodart-Fabre’95 (JMAA).
Exact insensitizing result for SHE: de Teresa’00 (CPDE), de
Teresa-Zuazua’09 (CPAA)...
Case of disjoint observation and control for SHE: de
Teresa-Micu-Ortega’04 (AML).
Also study for models in fluid Mechanics by Carreno, Guerrero, Gueye...
and for the wave equation by Alabau, Dager, Tebou...
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Introduction

The general problem under study

A quite natural question

Insensitization with respect to a perturbation of the domain?

Introduced by Lissy-Privat-Simporé’17 (COCV).

T > 0 final time. ω, Θ open subsets of Rd .
Ω smooth bounded domain of Rd .
ξ ∈ L2((0,T )× Ω) source term, h ∈ L2(0,T ; L2(ω)) control.

We introduce Jh(Ω) =
1
2

∫ T

0

∫
Θ

yΩ,h(t, x)2 dxdt,

where yΩ,h, defined on (0,T )× Rd , is the extension by 0 of y verifying
∂y

∂t
−∆y = ξ + h1ω in (0,T )× Ω,

y = 0 on (0,T )× ∂Ω,
y (0, ·) = 0 in Ω.
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Perturbations of a domain

Ω0 reference domain.
Q0 = (0,T )× Ω0, Σ0 = (0,T )× ∂Ω0.

V in W 3,∞(Rd ,Rd), τ > 0 small enough.
TV,τ := Id+τV is a diffeo in Rd

ΩV,τ = (Id+τV)(Ω0) is also a bounded smooth domain and is
“small” perturbation of the domain.
QV,τ = (0,T )× ΩV,τ , ΣV,τ = (0,T )× ∂ΩV,τ .

yΩV,τ ,h: extension by 0 of y verifying
∂y

∂t
−∆y = ξ + hχω in QV,τ ,

y = 0 on ΣV,τ ,
y (0, ·) = 0 in ΩV,τ

and we study Jh(ΩV,τ ) =
1
2

∫ T

0

∫
Θ

y2
ΩV,τ ,h.
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Introduction

Three definitions of insensitizing control

Definition
The control h insensitizes Jh exactly if

for all V ∈ W3,∞,
d

dτ
(Jh (ΩV,τ ))

∣∣∣∣
τ=0

= 0. (Insens-Ex)

Let E be a linear subspace of W3,∞. The control h insensitizes Jh for E
if

for all V ∈ E , d

dτ
(Jh (ΩV,τ ))

∣∣∣∣
τ=0

= 0. (Insens-Ex-E)

Given ε > 0, the control h ε-insensitizes Jh if

for all V ∈ W3,∞,

∣∣∣∣ d

dτ
(Jh (ΩV,τ ))

∣∣∣∣
τ=0

∣∣∣∣ ≤ ε||V||W 3,∞(Rd ,Rd ).

(Insens-Appro)

Clearly (Insens-Ex) implies (Insens-Ex-E) and (Insens-Appro) for any E .
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Reformulation in terms of a coupled problem (1)

Let y0 = yΩ0,h. Let us introduce
∂y0

∂t
−∆y0 = ξ + hχω in Q0,

y0 = 0 on Σ0,
y0 (0, ·) = 0 in Ω0,

(Coup-y)


−∂q0

∂t
−∆q0 = y0χΘ in Q0,

q0 = 0 on Σ0,
q0 (T , ·) = 0 in Ω0,

(Coup-q)

By superposition, (y0, q0) = (yξ + yh, qξ + qh),

where (yh, qh) is the part depending on h (i.e. for ξ = 0), and (yξ, qξ)
the part depending on ξ (i.e. for h = 0).
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Reformulation in terms of a coupled problem (2)

(Insens-Ex) ⇔ find h ∈ L2(Q0) such that∫ T

0
∂ny0∂nq0 dtdσ = 0, a.e. in ∂Ω0.

(Insens-Ex-E) ⇔ find h ∈ L2(Q0) such that for all V ∈ E ,∫
∂Ω0

(V · n)

(∫ T

0
∂ny0∂nq0 dt

)
dσ = 0.

(Insens-Appro) ⇔ find h ∈ L2(Q0) such that for all V ∈W 3,∞,∣∣∣∣∣
∫
∂Ω0

(V · n)

∫ T

0
∂ny0∂nq0

∣∣∣∣∣ 6 ε||V||W 3,∞(Rd ,Rd ).

Remark
We are reduced the problem to some unusual controllability problems:
even if (Coup-y)-(Coup-q) is linear, our conditions are bilinear in (y0, q0)!
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Sketch of the proof

Let ẏ0 be the derivative of y0 in a direction V.
Then, ẏ0 verifies

∂ẏ0

∂t
−∆ẏ0 = 0 in Q0,

ẏ0 = −∂ny0(V · n) on Σ0,
ẏ0 (0, ·) = 0 in Ω0.

Then, multiply the first equation of (Coup-q) by ẏ0, integrate by parts to
obtain

d

dτ
(Jh (ΩτV))

∣∣∣∣
τ=0

=

∫
∂Ω0

V · n

(∫ T

0
∂ny0∂nq0 dt

)
dσ,

The result easily follows.
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A first negative result on exact insensitization

Theorem (ELP’20)

Assume that Ω0 is smooth (of class C∞), that Θ = Ω0 and that ω b Ω0.
Then, there exists ξ ∈ L2(Q0) such that the exact insensitization problem
cannot be solved.

Sketch of the proof.

Assume
∫ T

0 ∂ny0∂nq0 = 0.
Write (y0, q0) = (yξ + yh, qξ + qh),
Construct ξ ∈ L2(Q0) such that∫ T

0
∂ny0∂nq0 = −g(x)2 + g(x)a0(x) + a1(x) = 0,

for g of class C 4 but nowhere C 5, and for a0, a1 (depending linearly,
quadratically on ∂nyh,∂nqh) smooth.

Contradiction since either g(x) = 1
2

(
− a0(x) +±

√
a0(x)2+4a1(x)

)
locally, or g(x) = −a0(x)/2 everywhere.
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Results when Θ ∩ ω = ∅

A positive result in a particular geometrical setting

Assume ω ∩Θ = ∅, Θ b Ω0, and Ω0 \Θ is connected.

Ω0

Θ
ω

Difficult from the viewpoint of controllability
(Ammar-Khodja-Benabdallah-González-Burgos-De Teresa’16 JMAA)
And also insensitizing controls with respect to the initial condition
(Kavian-De-Teresa’10 COCV, Micuo-Ortega-de Teresa’04 AML).

Theorem (ELP’20)

For all ξ ∈ L2(Q0) and ε > 0, there exists h ∈ L2(0,T ; L2(ω)) that
ε-approximately insensitizes Jh.
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Sketch of the proof (1)

We have a stronger property.

Proposition

For any (f1, f2) ∈ L2(Σ0)2, any ε > 0 and any ξ ∈ L2(Q0), there exists a
control function h ∈ L2(0,T ; L2(ω)) such that the solution (y , q) of
(Coup-y)-(Coup-q) satisfies

‖∂ny − f1‖L2(Σ0) + ‖∂nq − f2‖L2(Σ0) ≤ ε. (Approx-Boun)

Choose f1 = f2 = 0, ε↔
√
ε and CS in space:∫ T

0
‖∂ny0∂nq0‖L1(∂Ω0) ≤ ε

and the desired result follows:∣∣∣∣∣
∫
∂Ω0

(V · n)

∫ T

0
∂ny0∂nq0

∣∣∣∣∣ 6
∥∥∥∥∥
∫ T

0
∂ny0∂nq0 dt

∥∥∥∥∥
L1(∂Ω0)

||V||L∞(∂Ω0)

6 ε||V||W 3,∞(Rd ,Rd ).
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Sketch of the proof of the Proposition

Duality argument: if (g1, g2) ∈ L2(Σ0), and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = g1 on (0,T )× ∂Ω0,
ψ (T , ·) = 0 in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0.

Ω0

Θ
ω

ψ = 0 in (0,T )× ω.
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Sketch of the proof of the Proposition

Duality argument: if (g1, g2) ∈ (L2(0,T ; L2(∂Ω0)))2, and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = g1 on (0,T )× ∂Ω0,
ψ (T , ·) = 0 in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0.

Ω0

Θ
ω

ψ = 0 in (0,T )× ω,

−∂ψ
∂t
−∆ψ = 0 on (0,T )×(Ω0 \Θ).
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Sketch of the proof of the Proposition

Duality argument: if (g1, g2) ∈ (L2(0,T ; L2(∂Ω0)))2, and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = g1 on (0,T )× ∂Ω0,
ψ (T , ·) = 0 in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0.

Ω0

Θ
ω ⇒ ψ ≡ 0 in (0,T )×(Ω0 \Θ).

⇒ g1 = 0.
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Sketch of the proof of the Proposition

Duality argument: if (g1, g2) ∈ (L2(0,T ; L2(∂Ω0)))2, and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = 0 in (0,T )× (Ω0 \Θ),
ψ (T , ·) = 0 in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0.

Ω0

Θ
ω

∫ T

0

∫
Θ

|ϕ|2

=

∫
Q0

ϕ

(
−∂ψ
∂t
−∆ψ

)
= 0 by IPP .
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Sketch of the proof of the Proposition

Duality argument: if (g1, g2) ∈ (L2(0,T ; L2(∂Ω0)))2, and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = 0 in (0,T )× (Ω0 \Θ),
ψ (T , ·) = 0 in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0.

Ω0

Θ
ω

⇒ ϕ = 0 in (0,T )×Θ.

⇒ ϕ = 0 in (0,T )× Ω0

⇒ g2 = 0.
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A refinement of the previous result

In fact, we can do better.

Theorem (ELP’20)

Let E be a finite-dimensional linear subspace of W 3,∞(Rd ,Rd). Then, for
all ξ ∈ L2(Q0) and for all ε > 0, there exists a control h ∈ L2(0,T ; L2(ω))
that insensitizes J exactly for E and that ε-approximately insensitizes J.

Sketch of the proof.
First step: Insensitization on E . To simplify, assume that E is of
dimension 1: E = Span(V). Goal: find h such that

U(h) =

∫
Σ0

(V.n)∂ny0∂nq0 = 0.
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Sketch of the proof (1)

We write
U(h) = Q(h) + L(h) + C , with

Q(h) =

∫
∂Ω0

(V · n)

(∫ T

0
∂nyh∂nqh dt

)
dσ,

L(h) =

∫
∂Ω0

(V · n)

(∫ T

0
(∂nyξ∂nqh + ∂nyh∂nqξ) dt

)
dσ,

C =

∫
∂Ω0

(V · n)

(∫ T

0
∂nyξ∂nqξ dt

)
dσ.

We will choose h1 and h2 in a two-dimensional space: h = λ1h1 + λ2h2,
(λ1, λ2) ∈ R2. We write

λ2
1Q11(h1)+λ1λ2Q12(h1, h2)+λ2

2Q22(h2)+λ1L1(h1)+λ2L2(h2)+C = 0.
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Sketch of the proof (2)

Here,

Q11(h1) =

∫
∂Ω0

(V · n)

(∫ T

0
∂nyh1∂nqh1 dt

)
dσ,

Q12(h1, h2) =

∫
∂Ω0

(V · n)

(∫ T

0
(∂nyh1∂nqh2 + ∂nyh2∂nqh1) dt

)
dσ,

Q22(h2) =

∫
∂Ω0

(V · n)

(∫ T

0
∂nyh2∂nqh2 dt

)
dσ,

L1(h1) =

∫
∂Ω0

(V · n)

(∫ T

0
(∂nyh1∂nqξ + ∂nyξ∂nqh1) dt

)
dσ,

L2(h2) =

∫
∂Ω0

(V · n)

(∫ T

0
(∂nyh2∂nqξ + ∂nyξ∂nqh2) dt

)
dσ.
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Sketch of the proof (3)

If one can choose h1, h2 such that Q11 = Q22 = 0 and Q12 = 1, then
choosing λ2 = λ1 leads to solve

λ1|λ1|+ λ1L1(h1) + |λ1|L2(h2) + C = 0.

This has a solution by the intermediate value theorem. Unfortunately,
this program cannot be solved exactly but only approximately by
(Approx-Boun), which turns out to be enough.
For a space of dimension M, we choose the control on a space of
dimension 2M and we use a Brouwer fixed point argument. Our
construction also leads to a continuity estimate

‖h‖L2(0,T ;L2(ω)) 6 C‖(∂nyξ, ∂nqξ)‖(L2(0,T ;L2(∂Ω0)))2 . (Cont-app)
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Sketch of the proof (4)

Second step: adding the approximate insensitization. Using
(Approx-Boun), for some ε0 > 0 small enough, choose happ such that the
corresponding solution (y , q) to (Coup-y)-(Coup-q) verifies

||(∂ny , ∂nq)|| 6 ε0.

Then, for the source term ξ1 = ξ + happ, choose hE such that the
corresponding solution (y0, q0) to (Coup-y)-(Coup-q) (with source ξ1)
verifies ∫

∂Ω0

(V · n)

(∫ T

0
∂ny0∂nq0 dt

)
dσ = 0.

h = happ + hE is suitable for exact insensitization on E of ξ. By
(Cont-app) (for hE and ξ1) , if ε0 is chosen small enough, we also have

||(∂ny0, ∂nq0)|| 6
√
ε

and so ∣∣∣∣∣
∫
∂Ω0

(V · n)

∫ T

0
∂ny0∂nq0

∣∣∣∣∣ 6 ε||V||W 3,∞(Rd ,Rd ).
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Insensitiziation and controllability

Assume that
ω ∩Θ 6= ∅.

Theorem (ELP’20)

For every ξ ∈ L2(Q0), ε > 0 and yT ∈ L2(0,T ), there exists a control h
which ε-insensitizes Jh and which also ε-approximately controls the state
y0 of (Coup-y) at time T to yT in the sense that

||y0(T )− yT ||L2(Ω0) ≤ ε.

Besides, if the source term ξ is null-controllable in the sense that there
exists hnc ∈ L2(0,T ; L2(ω)) such that the solution ync of
(Coup-y) satisfies

ync(T ) = 0 in Ω0,

then, there exists a control h ∈ L2(0,T ; L2(ω)) which ε-insensitizes Jh
and which also steers the state y0 of (Coup-y) exactly to 0 at time T .
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Interpretation of the previous result

Remind that 
∂y0

∂t
−∆y0 = ξ + hχω in Q0,

y0 = 0 on Σ0,
y0 (0, ·) = 0 in Ω0,

−∂q0

∂t
−∆q0 = y0χΘ in Q0,

q0 = 0 on Σ0,
q0 (T , ·) = 0 in Ω0,

What is the meaning of these theorems

In terms of controllability, we have a robustness result: We can have an
approximate/null-control for a solution y0 the heat equation with a
source term (Coup-y), that ensures moreover that Jh is robust to small
variations of the boundary.
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sketch of the proof of the first result

For the approximate controllability, the proof is very similar to the
previous case, prove a unique continuation property: if
(g1, g2, ψT ) ∈ (L2(0,T ; L2(∂Ω0)))2 × L2(Ω0), and (ψ,ϕ) solves

−∂ψ
∂t
−∆ψ = 1Θϕ in (0,T )× Ω0,

ψ = g1 on (0,T )× ∂Ω0,
ψ (T , ·) = ψT in Ω0,

∂ϕ

∂t
−∆ϕ = 0 in (0,T )× Ω0,

ϕ = g2 on (0,T )× ∂Ω0,
ϕ (0, ·) = 0 in Ω0,

then ψ = 0 in (0,T )× ω ⇒ g1 = g2 = 0 and ψT = 0.
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Sketch of the proof of the second result (1)

Introduce the functional Kε defined for
(g1, g2, ψT ) ∈ (L2(0,T ; L2(∂Ω0)))2 × L2(Ω0) =: X0 by

Kε(g1, g2, ψT ) =
1
2

∫ T

0

∫
ω

|ψ(t, x)|2 dxdt

+

∫ T

0

∫
Ω0

1Θy0ϕ+ ε‖(g1, g2)‖(L2(0,T ;L2(∂Ω0)))2 ,

Endow X0 with the norm

‖(g1, g2, ψT )‖2obs =

∫ T

0

∫
ω

|ψ|2 +

∫ T

0

∫
∂Ω0

(
|g1|2 + |g2|2

)
,

Then, define Xobs = X0
‖·‖obs .

Extend Kε continously on Xobs , by density argument and Carleman
estimates.
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Sketch of the proof of the second result (2)

Prove by contradiction that

lim inf
‖(g1,g2,ψT )‖obs→∞

Kε(g1, g2, ψT )

‖(g1, g2, ψT )‖obs
≥ ε.

Kε is continuous; strictly convex and coercive, so that it admits a
unique minimizer (g∗1 , g

∗
2 , ψ

∗
T ). The Euler-Lagrange equation gives

that if we set h1 = ψ∗1ω, then (y1, q1) solution of

∂y1

∂t
−∆y1 = h11ω in (0,T )× Ω0,

y1 = 0 on (0,T )× ∂Ω0,
y1 (0, ·) = 0 in Ω0,

−∂q1

∂t
−∆q1 = 1Θ(ync + y1) in (0,T )× Ω0,

q1 = 0 on (0,T )× ∂Ω0,
q1 (T , ·) = 0 in Ω0,

satisfies ‖∂ny1 + ∂nync‖L2(0,T ;L2(∂Ω0)) + ‖∂nq1‖L2(0,T ;L2(∂Ω0)) ≤ ε and
y1(T ) = 0. Setting y = ync + y1, q = q1 and h = hnc + h1 answers
our question.
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Other results obtained

Some other results are proved in Ervedoza-Lissy-Privat’20.

Exact insensitizing problem

There exists geometries where it can be solved positively:
Θ b ω.
∂Θ has only one connected component, Θ b Ω0, and ∂Θ ⊂ ω.

On the case ω ∩Θ 6= ∅, we can also obtain the following result.

Theorem (ELP’20)

Let E be a finite-dimensional subspace of W 3,∞(Rd ,Rd).
Then, for all ξ ∈ L2(Q0) and yT ∈ L2(Ω0), for all ε > 0 , there exists a
control h ∈ L2(0,T ; L2(ω)) that insensitizes J exactly for E ,
ε-approximately insensitizes J, and that approximately controls y0 at time
T .
Besides, if the source term ξ ∈ L2(Q0) is null-controllable, then, there
exists a control h ∈ L2(0,T ; L2(ω)) that insensitizes J exactly for E ,
ε-approximately insensitizes J, and that steers y0 to 0 at time T .
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Open problems (1)

Exact insensitization : understand better the influence on the
geometric setting, notably when Θ ( Ω0 and when Θ ∩ ω = ∅.
Characterization of the source terms ξ for which exact insentization
is true.
Obtain the same kind of results for other classes of equations (wave
equation, semilinear heat equation, models coming from fluid
mechanics, ...)
Generalize our results for the case ω ∩Θ 6= ∅ to the case ω ∩Θ = ∅.
Likely to be very difficult. A preliminary is to obtain unique
continuation properties / null controllabiltiy for coupled systems of
heat equations with disjoint coupling control region, which is far
from being understood and out of reach in a general context.
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Open problems (2)

More general shape functionals, for instance involving also the
gradient of the solution.
More generally, for various control systems (finite or
infinite-dimensional), study robustness issues for controllability, with
respect to small perturbations.

Reference
Insensitizing control for the heat equation with respect to boundary
variations, Sylvain Ervedoza, Pierre Lissy and Yannick Privat, submitted
(2020),
https://arxiv.org/abs/2012.14327
https://hal.archives-ouvertes.fr/hal-03083177v1.

Thank you for your attention.
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