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Controllability

We consider a linear PDE, of one of the following types:

i∂tu −∆u = f (Schrödinger equation)

∂2
t u −∆u = f (Wave equation)

posed in a bounded subset M ⊂ Rn

with ∂M 6= ∅ (and Dirichlet boundary conditions).

We fix ω ⊂ M an open subset and a time T > 0.

The question of controllability is: given any initial
datum uinit and any final target ufin, is it always
possible to find f supported in ω such that the
solution to the PDE with initial datum uinit is equal to ufin at time T?

The answer depends on ω,T , and we have to say in which spaces
uinit, ufin and f live.
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Observability

Controllability is equivalent to observability.

Schrödinger: Given T > 0, ω ⊂ M, we say that observability holds if
∃C > 0 such that for any solution u of the free equation

i∂tu −∆u = 0

there holds

‖u(0, ·)‖L2(M) 6 C

∫ T

0

∫
ω

|u(t, x)|2 dxdt

Waves: Given T > 0, ω ⊂ M, we say that observability holds if ∃C > 0
such that for any solution u of the free equation

∂2
t u −∆u = 0

there holds

‖(u0, u1)‖2
H×L2 6 C

∫ T

0

∫
ω

|∂tu(t, x)|2dxdt.

In the sequel we only consider observability, but there are dual
controllability results.
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Euclidean/Riemannian results

For the Euclidean Laplacian, and more generally for the Laplace-Beltrami
operator (Laplacian) on compact Riemannian manifolds, observability
results were proved in the 90es. Roughly:

Wave equation: observability holds in time T > 0 in ω if and only
if the so-called geometric control condition (GCC) holds;

Schrödinger equation: if GCC holds in ω for some T0 > 0, then
observability in ω holds in any time T > 0. Converse false !

In this talk, we are going to investigate observability for PDEs with ∆ a
sub-Laplacian (= sub-Riemannian Laplacian), typically the Laplacian in
the Heisenberg group.

I - Sub-Laplacians

II - Subelliptic wave equations are never observable

III - Subelliptic Schrödinger equations (joint with Chenmin Sun and
Clotilde Fermanian Kammerer)
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I - Sub-Laplacians
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Sub-Laplacians

Let M be a smooth connected compact manifold of dimension n and µ
be a smooth volume on M. Let X1, . . . ,Xm be smooth vector fields on
M, and D = Span(X1, . . . ,Xm) (the “distribution”). We assume

Lie(D) = TM.

We define the sub-Laplacian

∆ = −
m∑
i=1

X ∗i Xi =
m∑
i=1

X 2
i + divµ(Xi )Xi ,

where

Star = transpose in L2(M, µ);

divµX is defined by LXµ = (divµX )µ.

Sub-Laplacians are hypoelliptic: ∆u ∈ C∞ ⇒ u ∈ C∞. Examples:

Heisenberg: X 2
1 + X 2

2 with X1 = ∂x and X2 = ∂y − x∂z in R3.
[X1,X2] = −∂z . Then

Grushin: X 2
1 + X 2

2 with X1 = ∂x and X2 = x∂z in R2.

There can be complicated relations between brackets: [X1,X3] = X1, etc ;
sometimes, more brackets are required to generate the tangent space.
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Sub-Riemannian distance

There is a metric g associated to the Xj , namely

gq(v) = inf


m∑
j=1

u2
j , v =

m∑
j=1

ujXj(q)

 ,

and an associated distance

dsR(q, q′) = inf
γ(0)=q,γ(1)=q′

γ̇(t)∈D, a.e. t

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt.

According to Chow-Rashevsky, dsR(q, q′) < +∞ for any q, q′ ∈ M.
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II - Subelliptic wave equations are never observable
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In a few words

We consider the wave equation

∂2
ttu −∆u = 0, (u|t=0, ∂tu|t=0) = (u0, u1), u = 0 on (0,T )× ∂M

in a manifold M equipped with a volume µ. Here, ∆ is a sub-Laplacian.
We fix ω ⊂ M (measurable). The natural energy of a solution is

E (u(t, ·)) =
1

2

∫
M

(
|∂tu(t, x)|2 + |∇sRu(t, x)|2

)
dµ(x).

where

∇sRφ =
m∑
j=1

(Xjφ)Xj .

Then d
dtE (u(t, ·)) = 0. Initial data:

‖(u0, u1)‖2
H×L2 = ‖u0‖2

H + ‖u1‖2
L2(M,µ)

with

‖v‖H =

(∫
M

|∇sRv(x)|2dµ(x)

) 1
2

.
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Main result

Recall that (exact) observability holds in time T0 if ∃C > 0,

C‖(u0, u1)‖2
H×L2 6

∫ T0

0

∫
ω

|∂tu(t, x)|2dµ(x)dt.

We take a sub-Laplacian −
∑

X ∗i Xi such that D = Span(X1, . . . ,Xm)
satisfies the following unavoidable assumption:

The set of x ∈ M s.t. Dx ( TxM is dense in M.

Theorem (C.L.-2020)

Let T0 > 0 and let ω ⊂ M be a measurable subset such that M\ω has
nonempty interior. Then the subelliptic wave equation is not exactly
observable on ω in time T0.

NB: Also works for Grushin and the almost-Riemannian case as soon as
M \ ω contains in its interior a point x such that Dx ( TxM.
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How does one usually disprove an observability inequality?

If ∆ is a Riemannian Laplacian,

(Observability in time T0 in ω)⇔
(ω satisfies GCC in time T0)

where (GCC):

any ray of geometrical optics (=geodesic)
travelled at speed 1 meets ω within time T0.

(Bardos-Lebeau-Rauch, 1992).

Proof that if GCC does not hold, then observability
fails: If GCC is not satisfied, we take a geodesic
not entering ω in time T0. We construct a sequence
of solutions of the wave equation whose energy is
concentrated along this geodesic. This sequence contradicts the
observability inequality.
Many (equivalent) constructions: Gaussian beams, coherent states,
WKB.

Reminder: A geodesic is a local minimizer of the sR distance dsR.
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Structure of the proof

Two ingredients:

Find a sub-Riemannian geodesic which does not enter ω within time
T0: in other words, (GCC) never holds because there exist spiraling
geodesics which stay very long in M\ω.

Construct a Gaussian beam along this geodesic: all the energy
concentrates near this geodesic, hence outside ω.
Therefore observability does not hold.
More generally, along any (normal) sub-Riemannian geodesic, one
may construct Gaussian beams.

Remark: Second point is not surprising (although not explicitly in the
literature), first point is new.
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Proof: Existence of spiraling geodesics

Forget about the wave equation ! This is pure geometry.

Proposition

For any T0 > 0, any q ∈ M and any open neighborhood V of q in M,
there exists a geodesic t 7→ x(t) of (M,D, g) travelled at speed 1 and
such that x(t) ∈ V for any t ∈ (0,T0).

Remark: These geodesics lose quickly their optimality.
Main idea: Isolate a “Heisenberg structure”.
Two steps: Nilpotent case and then general case.

Example: if X1 = ∂x and X2 = ∂y − (x + x2)∂z we compare the geodesics
with those of Heisenberg, i.e., X2 is replaced by ∂y − x∂z .
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Example of spiraling: the 3D Heisenberg case

Example: MH = (−1, 1)x1 × Tx2 × Tx3 , with T = R/Z.
Vector fields X1 = ∂x1 and X2 = ∂x2 − x1∂x3 .
Laplacian ∆ = X 2

1 + X 2
2 . [Measure µ =Lebesgue.]

Distribution DH = Span(X1,X2).
Metric gH : (X1,X2) is a gH -orthonormal frame of DH .
Then, (MH ,DH , gH)=“Heisenberg manifold with boundary”.
We note that [X1,X2] = −∂x3 (⇒ ∆ subelliptic).

Spiraling geodesics:

x1(t) = ε sin(t/ε)

x2(t) = ε cos(t/ε)− ε
x3(t) = ε(t/2− ε sin(2t/ε)/4).

They spiral around the x3 axis x1 = x2 = 0.

Remark: This geodesic is travelled at speed 1.
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Intuition in Heisenberg

The Hamiltonian is g∗(x , ξ) = σp(−∆).
Example: For Heisenberg, g∗ = ξ2

1 + (ξ2 − x1ξ3)2.
Geodesics are projections of null-bicharacteristics (travelled at speed 1),
i.e., maximal integral curves of ~p2 lying in {p2 = 0} where
p2 = −τ 2 + g∗. In Heisenberg, the bicharacteristic equations are

ẋ1(t) = 2ξ1, ξ̇1(t) = 2ξ3(ξ2 − x1ξ3),

ẋ2(t) = 2(ξ2 − x1ξ3), ξ̇2(t) = 0,

ẋ3(t) = −2x1(ξ2 − x1ξ3), ξ̇3(t) = 0.

Take ξ3 = (2ε)−1. Since the geodesic
is travelled at speed 1, i.e., ξ2

1 + (ξ2 − x1ξ3)2 = 1/4,
we take for example ξ1 = cos(t/ε)/2 and ξ2 = 0. Then

x1(t) = ε sin(
t

ε
), x2(t) = ε cos(

t

ε
)− ε

x3(t) = ε(
t

2
− ε

4
sin(

2t

ε
)).

Geodesics do not go far from their initial point !
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Proof: Gaussian beams along normal sR geodesics

Two steps for constructing Gaussian beams (GBs):
- Approximate solutions: ∂2

ttvk −∆vk ∼ 0 with energy concentrated
along the geodesic;
- Exact solutions: ∂2

ttuk −∆uk = 0 and concentrated energy.

Important: The construction is the same as for the Riemannian wave
equation since normal geodesics stay in the elliptic part of the symbol.
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III - Subelliptic Schrödinger equations

Joint with Chenmin Sun and Clotilde Fermanian Kammerer.

[For subelliptic heat equations, see [Beauchard-Cannarsa-Gugliemi 2014]
and [Beauchard-Cannarsa 2017] among others.]
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Ideas for subelliptic Schrödinger equation

Burq-Sun (2019) for the Grushin Schrödinger

i∂tu − (∂2
x + x2∂2

y )u = 0 on Rt × (−1, 1)x × Ty .

Observation set of the form ω = (−1, 1)x × ωy (union of strips).

Result:
Existence of a minimal time of
control L(ω) related to the maximal
height of the strips of MG\ω.

Proof: Semiclassical analysis
and construction of vertical Gaussian
beams (along degenerated direction).
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Ideas for subelliptic Schrödinger equation

With spiraling geodesics: We find again their result heuristically.

Different
frequencies travel at different speed
(dispersion). If ξy is large, the
spiraling geodesic is more “folded”,
makes very small meanders,
but it is travelled more quickly.
All in all, geodesics
starting from 0 but with different ξy
reach ω at the same time ( 6= waves).

With C. Fermanian: We proved a
similar result in compact quotients of groups of Heisenberg type using
non-commutative Fourier analysis (representation theory) and adapted
semiclassical measures. We found finite speed propagation along
degenerate directions. We also constructed “Gaussian beams” in these
directions (quite robust technique, as soon as representations are known).
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Subellipticity and speed of propagation

We consider the Baouendi-Grushin operator

∆γ = ∂2
x + |x |2γ∂2

y

in M = (−1, 1)x × Ty where T = R/2πZ.

If γ ∈ N, we need brackets of length γ + 1 to recover TM along x = 0.
Step = γ + 1.

ω is a horizontal strip (−1, 1)x × Iy where I ( T.

Fix s ∈ N. We consider the Schrödinger-type equation
i∂tu − (−∆γ)su = 0 in M with Dirichlet boundary conditions. It is
observable on ω in time T > 0 if ∃C > 0 such that for any solution u,

‖u(0, ·)‖2
L2(M) 6 C

∫ T

0

‖u(t, ·)‖2
L2(ω) dt.

We denote by Tob the infimum of all observable times T > 0.
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Subellipticity and speed of propagation

Here is the main result concerning observability of

i∂t − (−∆γ)s = 0, ∆γ = ∂2
x + |x |2γ∂2

y .

Theorem (C.L., C. Sun (2020))

Assume that γ > 1. Then

If s < γ+1
2 , then Tob = +∞.

If s = γ+1
2 , then 0 < Tob < +∞.

If s > γ+1
2 , then Tob = 0.

Remark: we do not compute the exact value when s = γ+1
2 .

Remark: it recalls the results of Beauchard-Cannarsa-Guglielmi for the
heat equation. We recover part of it thanks to abstract results of
Duyckaerts-Miller 2012.
Remark: if s = 1

2 , this is the wave result.
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Ideas of proof

Point 1 (and part of point 2) : to disprove observability,
construction of analogues of Gaussian beams, directly in the
degenerated directions.

Point 3 (and part of point 1) : resolvent estimate

‖v‖L2(M) 6 C‖v‖L2(ω) + Ch−(γ+1)‖(h2∆γ + 1)v‖L2(M)

and then Burq-Zworski 2004. Also has consequences on damped
wave equations.

Thank you very much for your attention !
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