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1. Introduction to some Optimal Control Ideas

2. River Model
with collaborator, Rebecca Pettit, U. S. Dept. of Defense

3. Black Sea Fishery Model
with collaborator, Mahir Demir, Michigan State U, postdoc in
fishery group

4. Modeling the effects of habitat degradation
with collaborators: Michael Kelly, Transylvania University and
Mike Neubert, Woods Hole Oceanographic Institute
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Basic Idea behind Optimal Control

System of ODEs or PDEs
Decide on how to manage this system
—by choosing the terms to be controlled and bounds on the controls

Design an appropriate GOAL, objective functional
—balancing opposing factors in functional
—include (or not) terms at the final time

Derive necessary conditions for the optimal control
Compute the optimal control numerically
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Optimal Control and Pontryagin’s Maximum Principle

Pontryagin and his collaborators developed optimal control
theory for ODEs about 1950.

Pontryagin’s key idea was the introduction of the adjoint
variables to attach the differential equations to the objective
functional (like a Lagrange multiplier attaching a constraint to
an optimization of a function).

Instead of finding an optimal control to maximize the objective
functional subject to dynamic equations, they maximize the
Hamiltonian with respect to the control at each time.

Hamiltonian H = (integrand of goal) +λ(RHS of state ODE).
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Choosing Management Actions
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Connect to Fish
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Approach to this Optimal Control Problem

After setting up a PDE with a control in a specifed set and an
objective functional, proving existence of an optimal control in an
appropriate weak solution space is a first step.

To derive the necessary conditions , we need to differentiate the
map

control → objective functional

Note that the state contributes to the objective functional, so we
also must differentiate the map

control → state

The “sensitivity” is the derivative of the control-to-state map. The
sensitivity solves a PDE, which is linearized version of the state
PDE.
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How to find and use the adjoint function

The formal adjoint of the operator in the sensitivity PDE is found.

Transversality Condition: final time condition λ = 0 at t = T

nonhomogeneous term

∂( integrand of J )

∂state

Differentiate the objective functional J(control) with respect to
the control.

Use the adjoint problem and the sensitivity problem to simplify and
obtain the explicit characterization of an optimal control.
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Choosing Actions in a River

in a river...mixture of flows and depth
Pools are deep with slow water.
Riffles are shallow with fast, turbulent water running over rocks.
Runs are deep with fast water and little or no turbulence
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First Example: Introduction to River Model

A conjecture from Lutscher et al. (2010) says that “a population
can persist at any location in a homogeneous habitat if and only if
it can invade upstream”.

In a pool-riffle river with fluctuating flows, if the time of low
discharge is not enough for the population to invade from the riffle
to the next upstream pool, then the population is washed back to
its foothold in the downstream pool where it remains until the next
low discharge time. (Yu Jin, Mark Lewis and collaborators, 2011,
2014)

Thus, the population stalls in the river but cannot spread further
upstream, which indicates that the assumption of homogeneity in
space or time in the conjecture is essential.
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More on introducing river model

Model adapted from - Jin, Hilker, Steffler, and Lewis (2014)
SIAP

Seasonal invasion dynamics in a spatially heterogeneous river
with fluctuation flows
PDE reaction-diffusion model
Incorporates both river and population dynamics
Use the water discharge flow to control the species
Motivated by invasive carp or zebra mussels

Suzanne Lenhart OC of Aquatic Models



GOAL

Use flow control in our model to keep the
invasive species downstream and prevent the
population from moving upstream
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Problem Formulation

STATE PDE: N(x , t) population density in river at location x , time t

Nt = −At(x , t)
N

A(x , t)
+

1

A(x , t)
(D(x , t)A(x , t)Nx)x −

Q(t)

A(x , t)
Nx

+ rN

(
1− N

K

)
N(0, t) = 0 on (0,T ), x = 0, (upstream)

Nx(L, t) = 0 on (0,T ), x = L, (downstream)

N(x , 0) = N0(x) on (0, L), t = 0

in weak solution space L2((0,T ); H1
{0} (0, L)) with time derivative in the

dual space

A(x , t) cross-sectional area of river
Free flow, downstream at x = L
Q(t) water discharge rate, CONTROL

Suzanne Lenhart OC of Aquatic Models



Optimal Control Problem Formulation and Analysis

Our control set is

U = {Q ∈ L∞(0,T ) |m ≤ Q(t) ≤ M}

with 0 ≤ m < M.

Our objective functional to minimize

J(Q) =

∫ T

0

∫ L

0
W (x)N(x , t)dxdt +

∫ T

0
εQ2(t)dt

where ε > 0 is small.

The weight W (x) is large near x = 0 to emphasize keeping the
population low upstream.
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Optimal Control Problem Formulation and Analysis

1 Differentiate the control-to-state map as a directional
derivative, sensitivity PDE

2 Find our adjoint PDE from the sensitivity PDE

3 Characterize the Optimal Control by differentiate the map
from control-to-J (goal)

4 Numerical simulation of state and adjoint system with optimal
control

Mostly just showing a few results here
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The Adjoint PDE and Optimal Control Characterization

− λt −
(

DA

(
λ

A

)
x

)
x

− Q∗
(
λ

A

)
x

+
Atλ

A
− rλ+ 2

rλ

K
N∗ = W (x)

λ(x ,T ) = 0 on (0, L), t = T ,

λ(0, t) = 0 on (0,T ), x = 0,

D(L, t)A(L, t)

(
λ(L, t)

A(L, t)

)
x

+ Q∗(t)
λ(L, t)

A(L, t)
= 0 on (0,T ), x = L

Optimal control characterization

Q∗(t) = min

(
M,max

(
1

2ε

∫ L

0

λ

A
N∗x (x , t)dx ,m

))
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Forward-Backward Sweep method

Initial guess for Q

Solve the state PDE, N, forward in time starting with the
initial condition

Solve the adjoint PDE, λ, backward in time with the final
time condition

Update Q using N and λ in the optimal control
characterization

Check convergence

If the control values of the last iteration and this iteration are
sufficiently close, we stop
If the control values are not close, we repeat
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Initial Condition and Weight Function

(a) Initial Condition (b) Weight Function

Population starts downstream near x = 9 and weight function is
high near x = 0 upstream.
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Cross-sectional Area is Constant, Population, Control

(c) No Control (d) Optimal Control

Figure: Population plots for the no control population and the optimal
control population. The parameter values are T = 10, L = 10, r = 0.6,

K = 200, D = 0.1, A = 20, ε = 0.05, and 0 ≤ Q(t) ≤ 10.

Suzanne Lenhart OC of Aquatic Models



Cross-sectional Area is Constant, Downstream

Figure: The upstream location of the constant control population with
Q = 10 (solid blue line), no control population (red dashed line), and the

optimal control population (magenta dotted line).

Detection level greater than 0.5
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Cross-sectional Area is Constant - Varying the Final Time

(a) T=5 (b) T=15

Figure: The upstream location of constant control population (solid blue
line), no control population (red dashed line), and optimal control

population (magenta dotted line).
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Cross-sectional Area is Constant

Table: The objective functional outputs for the cases tested where we changed
parameter values for K and r (given below) with T = 10.

Base Case K = 150 K = 250 r = 0.3

No Control 239.52 204.28 269.14 55.18

Constant Control 56.63 56.16 56.97 52.44

Optimal Control 40.12 37.96 41.13 20.29

OC Improv. on CC 29% 32% 28% 61%

baseline K = 200 and r = 0.6
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Cross-sectional Area is Constant, vary D and T

(a) Varying D (b) Varying T

Figure: The optimal control plots for varying of the parameters D and
T . The base case (red dotted line), the increased value (dashed blue

line), and the decreased value (solid magenta line).
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Cross-sectional Area is Not Constant -
A(x , t) = (0.5x + 25) + (0.2t (10− t))

(a) A(x , t) (b) A = 20

Figure: The upstream location of the constant control population
(solid), no control population (red dashed), and the optimal control

population (magenta) with T = 10.

J∗ values are 66 and 40 resp.. Cross-sectional area bigger in (a).
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Approximation of an Optimal Control

Figure: Comparing the optimal control and
the approximate control case when A = 20

J(approximate control) is 6% higher than J(Q∗)
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Conclusions and Future Work

Conclusions

Successful in illustrating pushing an invasive species
downstream compared to the no control case

Various results with varying parameters, initial conditions,
weight function, and the cross-sectional area

Future Work

Want to use a more realistic A(x , t)

Find data for an invasive species moving upstream

Restrict flow to certain seasons in a year

publication: Pettit, R.; Lenhart, S. Mathematics 2019, 7, 975-993.
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Connecting to Anchovy
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Second Example: Background on Black Sea Anchovy

The Anchovy family contributes to the global fisheries over 10% of landing.

The European anchovy is the third most widely harvested species of the
Anchovy family, and about 40% comes from the Black Sea.

Fishery Season is open on the Turkish Coast of the Black Sea between
September 1 and April 14, but for the commercial fishery of anchovy, the fishing
season is about 3 months.

Anchovy plays a crucial role in the Black Sea pelagic food web as a prey and
predator of many species. It is also an important consumer of zooplanktons in
the Black Sea.
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Figure: Landing of the Black Sea anchovy on Turkish coasts (dashed)
and in the Black Sea.

Note the collapse of the fishery on north coast and decrease on
Turkish coast due to M. leidyi jellyfish invasion about 1990.
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Main goal of our study:

The main goal is to investigate food chain-based optimal
fishery management strategies for the anchovy fishing on
the southern part of the Black Sea.

Tools:

We built a food chain model with three trophic levels and with
seasonal fishery to track the effects of the fishery on the Black
Sea food web, and see the effect of predator-prey relations on the
anchovy fishery, especially effect of the invasive Jellyfish.

Use OC tools to find the optimal harvesting strategy that maximizes
the discounted net value of the anchovy population with seasonal
harvesting.
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Flow Diagram of Consumption in the System

Figure 3: The flow diagram of consumption in our food chain model.

A(t): Anchovy biomass.

P(t): Predator biomass of anchovy (jellyfish).

Z(t): Zooplankton biomass.
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Our Food Chain Model with Seasonal Harvesting

dA

dt
= r1A(1− A

K1
) + m0AZ −m1PA− hA

dP

dt
= r2P(1− P

K2
) + m2PA + m3PZ −m6P

dZ

dt
= r3Z (1− Z

K3
)−m4AZ −m5PZ

with the initial conditions:

A(0) = A0, P(0) = P0, Z (0) = Z0

h(t): Harvest rate (effort), OUR CONTROL,
h = 0 in the offseason.

m0,m1,m2, m3, m4, and m5 are predation rates.

m6 denotes the predation rate on the jellyfish, P, from other
predators
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Objective Functional

J(h) =

∫
Ω

e−αt(phA−(µ1 + µ2h)h)dt

Ω = ∪Ti=1[ai , bi ] time intervals for seasonal harvesting.

[ai , bi ] represents the fishery season, November-January

e−αt is the discount rate

phA is the revenue from the yield of the fishery with price p

µ1h + µ2h2 denotes the cost of the harvest on Ω,
and h = 0 on [0,T ] \ Ω

Find an optimal control, h∗ in A such that

J(h∗) = sup
h∈A

J(h)

A = {h : [0,T ] −→ [0,M] | h=0 on [0,T ] \ Ω and h Leb. meas.}
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Use Pontryagin’s Maximum Principle and Hamiltonian

H = e−αt(hA− µ1h − µ2h
2) + λA

[
r1A−

r1

K1
A2 + m0AZ −m1PA− hA

]
+ λP

[
r2P −

r2

K2
P2 + m2PA + m3PZ −m6P

]
+ λZ

[
r3Z −

r3

K3
Z2 −m4AZ −m5PZ

]

dλA

dt
= −

∂H

∂A
dλ2

dt
= −

∂H

∂P
dλZ

dt
= −

∂H

∂Z

together with the transversality conditions, λ1(T ) = λ2(T ) = λ3(T ) = 0.

h∗(t) = min

{
M,max

{
0,

A∗(1− eαtλ∗A)− µ1

2µ2

}}
on [0,T ]
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Figure: Annual landing data of the Black Sea anchovy and its linear
regression.

The decreasing trend in landing indicates a need for better
management.
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Numerical Methods and Parameter Estimation

Using the annual landing and fleets data of the anchovy
population on the southern part of Black Sea, 2003-2016,
from
obtained by the Scientific, Technical and Economic
Committee for Fisheries (STECF),
we estimated the parameters with constant h, and then did
optimal control problem.

Estimated Parameters are r1, r2, r3 (intrinsic growth rates),
mi for i = 0, 1, .., 6 (interaction coefficients) with h constant.

We did a stability analysis with constant harvest to see the
threshold, above which the anchovy would decrease to 0. We
used to this to set the upper bound on our control at 0.35.
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Comparing Populations with Estimated Current Strategy
and Optimal Control

Figure: LHS: Populations with current strategy. See lower anchovy level on
left.
RHS: Populations with Optimal control with hmax = 0.35.
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Optimal Control Case

Figure: LHS: Landing of the Black Sea anchovy (blue) with OC case,
hmax = 0.35. RHS: Biomass of Jellyfish (red), and Zooplankton (green) with
OC case.
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Optimal Control Rates and their Approximation

Figure: Left: The harvesting effort in OC case, hmax = 0.35.
Right: The approximate harvesting effort with the first half of the
fishing season, h = 0.27. At upper bound h = 0, 35 on second half

J(approximate) is 2% less than J(h∗)
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Estimation of fishing fleets (Effort ≈ h)

Figure: Non-linear regression between Catch per Unit Effort
CPUE and landing of anchovy population depending on data.

The number of fishing fleets (Effort) is estimated as

Effort∗ =
Landing∗

CPUE ∗
,

where, Landing∗ is our optimal landing, and CPUE ∗ is our
approximate CPUE obtained from non-linear regression model.
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Compare with single DE case with only Anchovy

dA

dt
= r1A(1− A

K1
)− hA

We found the parameters to this model by fitting to the landing
data and using the same objective functional.

We found optimal harvest for this model.
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Populations with Single Species and Food Chain

Notice higher anchovy levels on the left plot (unrealistic).
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Comparison of two models in optimal control case

Table: hf and hs denote the optimal harvesting strategy of food chain
model and single species model, respectively. In the case of “Food Chain
with hs ”, we implement the optimal harvest strategy of the single
species model in our food chain model.

We got more profit by using only the anchovy equation than
by using our food chain model, but it is not realistic. The
single species modeling framework overestimates the landing
by 15% and the profit by 18%.
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Conclusions for Anchovy part

Instead of using the current strategy, if the optimal harvest
strategy were used in anchovy fishery between 2003-2016, one
could get 44% more profit and annually about 17,150 tonnes
extra landing.

Taking into account of the food web for the Black Sea
anchovy gives more reliable management information
than only using the anchovy equation.

Optimal controls with too much variation may be difficult to
implement and an approximation of an optimal control may
be chosen and implemented effectively.

Publication: Mahir Demir and Lenhart, Natural Resource
Modeling, December 2019
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Third Example: Another issue in fisheries:

more theoretical

How do both a dynamic habitat and habitat damage impact
stock dynamics?

What are optimal harvesting strategies that maximize
discounted fishery revenue and/or habitat conservation?

Investigate resource management strategies for a dynamic system:

1 fishery stock on a spatial domain, and a

2 habitat resource on which the stock depends for reproduction.
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Fishery-Habitat System Model

We use a system of parabolic, partial differential equations.

dynamics changing in both space and time.

Model Considerations:

dynamic stock and habitat

movement and growth

boundary conditions of spatial domain

dynamic harvesting

effect of harvesting on the system

harvesting lowers stock density
habitat damage from fishing decreases the quantity or quality
of spatial resources, and thus reducing stock carrying capacity.
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Fishery-Habitat System Model

The fish stock density, u(x , t), is modeled by:

ut = f (u, k) + (a1(x , t)ux)x + (b1(x , t)u)x − h(x , t)u, Q = Ω× (0,T )

u(x , t) = 0 ∂Ω× (0,T )

where
f (u, k) = r1u

(
1− u

M + k(x , t)

)
.

The habitat density, k(x , t), is modeled by:

kt = g(k) + (a2(x , t)kx)x + (b2(x , t)k)x − σkh(x , t), Ω× (0,T )

k(x , t) = 0 ∂Ω× (0,T )

with appropriate initial conditions.

carrying capacity in absence of habitat resource (M << 1)

habitat sensitivity (σ)

g(k) = r2k(1 − k)
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Objective Functional

Find the harvesting rate, h(x , t), that maximizes the discounted
fishery profit (revenue less cost) while conserving habitat.

Objective Functional

J(h) =

∫ T

0

∫
Ω

e−δt [PNhu − (W0 + W1h)h + PKk] dxdt

with discount term, δ ≥ 0, is maximized over the set of admissible
controls:

H = {h ∈ L∞(Q) : 0 ≤ h(x , t) ≤ hmax}

PN , PK weight coefficients and W0, W1 cost coefficients.

e−δt discount factor puts more weight on money made earlier.

Show only unexploited stock case.
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Figure: Stock, habitat and opt. harvesting: constant habitat (k(x) ≡ 1,
σ = 0, top ); dynamic vulnerable habitat (σ = 0.5, bottom). PK = 0
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After numerical runs, some conclusions

Publication: with Kelly, Neubert, in Theoretical Ecology 2018

1 Optimal spatial effort distribution and stock dynamics can
change dramatically when including effects of habitat damage

2 Reserves can be part of optimal solutions, and the reserve
area depends greatly on the habitat sensitivity.

3 Optimal reserves are prominent when the intrinsic value of the
habitat is high.

4 Model can identify spatial management strategies that are
beneficial to both conservation biologists and fishermen.
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Some Discussion Points

Other approaches: Viability modeling work of Luc Doyen and
Pedro Gajardo, (state constraints)

Adaptive management and learning, Paul Fackler, Jim
Nichols, Michael Runge.

NIMBioS Ecosystem Federalism working group
studying two patches with external ‘federal’ control and local
control,
recent publication: Sanchirico, Blackwood, Fitzpatrick, Kling,
Lenhart, Neubert, Shea, Sims, Springborn: Ecological
Applications 2020.
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