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Control system and problem statement

Let us to consider the following unstable heat equation with Neumann control,

2t — Zyy = 0Z, (t,x) € (0,00) x (0,L),

z¢(t,0) = 0, t € (0,00), )
ze(t, L) = u(t) +d(t), t € (0,00),

z(0,x) = zo(x), x € (0,L),

where, T > 0, L > 0, the state z, 7 € C([0, L]), the time-dependent function u is a boundary control and d is an
unknown disturbance.

Our goal is to design a feedback control which achieves a rapid exponential stabilization in presence of an
unknown boundary disturbance. That is, the decay rate of the system in closed loop is exponential with a rate
arbitrarily large.



Literature overview

Many control approaches have been developed to deal with the stabilization problem in presence of

uncertainties in the context of PDE. Among them:

e Adaptive control:
1. Wei Guo and Bao-Zhu Guo. “Adaptive Output Feedback Stabilization for One-Dimensional
Wave Equation with Corrupted Observation by Harmonic Disturbance”. In: SIAM Journal on Control
and Optimization 51.2 (2013)
2. Tarek Ahmed-Ali et al. “Adaptive boundary observer for parabolic PDEs subject to domain and
boundary parameter uncertainties”. In: Automatica 72 (2016). 1SsSN: 0005-1098

e Active disturbance rejection control (ADRC):

8 Dong Zhang, Shu-Xia Tang, and Scott . Moura. “State and Disturbance Estimator for Unstable
Reaction-Advection-Diffusion PDE with Boundary Disturbance”. In: 2019 Proceedings of the Conference
on Control and its Applications (CT)

4. Hongyinping Feng, Cheng-Zhong Xu, and Peng-Fei Yao. “Observers and Disturbance Rejection
Control for a Heat Equation”. In: IEEE Transactions on Automatic Control 65.11 (2020)



Feedback design

The main idea behind the feedback design is to split the control as follows

u=uj + up. 2)

o 1 deals with the instability caused by the «.

e 1 deals with the boundary disturbance d.



Feedback design: 1

Let us consider the following Backstepping transformation,

X

y(t,x) = 2(t,x) — / K(x,5:w)2(t,5) ds, 3)
0

where the kernel k is solution to

kxx — kss = (a(s) + w)k (x,5) € Q,
ks(x,0) = 0, x € (0,L), 4)
k(x,x) = =1 [Ja(s) +wds, x€(0,L),

where, Q@ = {(x,s) : 0 <s <x <L}, and w is a positive constant which can be chose large.

° M. Krstic and A. Smyshlyaev. Boundary Control of PDEs: A Course on Backstepping Designs.
Advances in Design and Control. Society for Industrial and Applied Mathematic, 2008



This transformation maps the following system

Zt — Zxx = 0Z, (tax) € (07 OO) X (OvL)7
2x(t,0) = 0, te (0,00), 5
zx(t,L) — k(L,L)z(t,L) — fo kx(L,s)z(t,s)ds = 0, t € (0, 00),
Z(O,X) = 20, X € (07 L)7
into this exponentially stable target system
Vi — Y = —wY, (t x) € (0,00) x (0,L),
t,0) =0
]/x(7 ) ) € (0,00), 6)
yx(t,L) =0, € (0, 00)
y(0,%) = vo, (0,L).

Then, we choose 17 as follows

uy design

L
u1(f) = k(L,L)z(t,L) + /kx(L,s)z(t,s) ds. (7)
0



Feedback design: u,

We plug-in u; into to the control system (1) and using the Backstepping transformation,
we get the following system

Yt — Yx = —WwY, (t,x) € (0,00) x (0, L),

Yx(£,0) =0, t € (0,00), ®)
yx(t,L) = up(t) +d(t), te€(0,00),

y(0,x) = vy, x € (0,L).

multiplying (8) by y and performing an integration by parts, it holds

1d
EaHyH%Z(o,L) + WHyHiZ(mL) = —lYxllfzo.p) + (u2(t) +d(t))y (¢, L). 9



Feedback design: u,

uy design
up(t) = —Dsign(y(t, L)) (10)
where D > 0 is a constant.
Where
o R
sign : R — 27,
N ifp#0
—s sign(p) = { I ' (11)
P A {[l,l}7 ifp=0,

o Al There exist a positive constant D, such that |d(t)| < D, forall t > 0.

with this we obtain that (thanks to psign(p) = |p|)
_”y«Y”iZ(O L) - DSngl(}/(tL))]/(f,L) + d(t) (tu L) < 07 vt > 0. (12)

therefore the solution y, satisfies that [[y(t, )HLZ(O 0 <e 2w ’||Jlo||L2 0.0)



Feedback design

Feedback law u in variable z

1L

L
u(t) = k(L,L)z(t,L) + /kx(L,s)z(t,s) ds — Dsign <z(t, L)+ /k(L,s)z(t,s) ds) (13)
0

0

Then the closed-loop system is given by

2t — Zxx = 42, (t,X) S (07 OO) X (07 L)7
zx(t,0) = 0, t € (0, 00),

zy(t,L) — k(L,L)z(t,L) — ka(L7 s)z(t,s) ds (19)
0

+Dsign (z(if7 L)— f k(L,s)z(t,s) ds) > d(t), t € (0,00),
0

z(0,x) = zo(x), x € (0,L),




Well-possedness of the closed-loop system

To begin with, we apply the backtstepping transformation to previous closed-loop system to get

Yt — Yo = —wY, (t,x) € (0,00) x (0,L),

yx(t,0) =0, t € (0,00), 15)
yx(t,L) + Dsign(y(t,L) 2 d(t), t € (0,00),

¥(0,x) = yo, x € (0,L).

Let us consider the following change of variable
w(t, x) = y(t, x) — p(x)d(t) (16)

where ¢ : [0,L] — R is a function smooth enough such that ¢'(0) = ¢(L) = 0 and ¢'(L) = 1. Then, w satisfies the
following differential inclusion

Wi — Wyy = —wW +f, (t,x) € (0,00) x (0,L),

wy(t,0) =0, t € (0,00), a7)
wx(t, L) + Dsign(w(t,L)) 3 0, t € (0,00),

w(0,x) = wp(x), x € (0,L),

where f = —¢d + ¢'d + wed.

10



Let us introduce the following operator
A:D(A) CL2(0,L) — L3(0,L), (18)
pr— Ap=—p" +wp, (19)
where w > 0 and the domain D(.A) is given by
D(A) = {p € [(0,L)/Ap € L? : p' (0) = 0, p/ (L) + Dsign(p(L)) 5 0} . (20)

The operator A is not linear.

Now, the differential inclusion (17) can be written in a operator form as follows,

{wt +Aw=f, te(0,00),

w(0) = wo. e

Our first task is to prove the well-posednes of (21). To do that, we prove the following result

The operator A is a maximal monotone operator.

11



Proof proposition 3.1

By Minty’s theorem, 4 is a maximal monotone operator if and only if

1. Ais monotone, i.e for all u,v € D(A), (A(u —v),u —v)12(0,1) > 0.
2. Forany f € L%(0,L) there exist p € D(A) such that

p+Ap =f,

almost everywhere x € (0,L).

12



In order to prove that operator Z + A has full rank.
Let us consider the Hilbert space H'(0, L) and the following functional, J : H'(0,L) — R, defined by

N =

L
T@) =5 [@'P+ @+ e~ fpdr + (L),
0

where,
e ¢, : R — Ris the Moreau Regularization of the function
¢:R—=R ¢ =Dlx|.
Besides,

o a(x) = (0¢)(x) = Dsign(x),
e ] = (I+ Xa)~!, the resolvent of a.

e ay: R—>Ray)= %(I —Jx). (The Yosida Approximation of «)

By the Moreau Theorem, ¢ is a convex, differentiable function and

o) = 2lal +o0a (), Ph() = (o)

22)

13



For all X\ > 0 and for all f € L*(0, L), there exist a minimizer my of J such that my € H?(0,L) and

{mA +Amy =f x€(0,L), ae. )
my (0) =0 mj (L) + ax(mx(L)) = 0.
Moreover, the minimizer my satisfies the following inequalities. There exist positives constants C;, i € {1,2,3} such
that, for any X\ > 0
el o, < Crllfllz o,z (24)
lax (mA(L)] < Callf 20 1y (25)
llmxllgz o,y < Callfllzzo,r)- (26)
Finally, it can be prove that (1) x>0 converges to m solution to
m+Am=f x€(0,L), ae. @)
m’(0) =0 m’'(L) + Dsign(m(L)) =0

when A — 0. Therefore A is a maximal monotone operator.

14



o A2Letus assume thatd € W21(0, 00) and d(0) = 0.

This implies that f € W'1(0, co; L?(0, L)), then by following theorem

Theorem (Kato, Theorem 4.1 in [2)

] Let B be a maximal monotone operator, zg € D(A) and g € WH1(0, 00; L2(0, L)). Then there exisit a unique
z € WH1(0, 00; L2(0, L)) such that

1. z(0) = zo,

2. zz+Bz>g ae te(0,00),

3. z(t) e D(A) ae te€(0,00).

Thus, if wy € D(A), there is an unique solution w € W'1(0, co; L?(0,L)) to

wr +Aw=f, t€(0,00), (28)
w(0) = wy

[2 ] R. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Vol. 49.
Mathematical Surveys and Monographs. American Mathematical Society, 1997.
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By the change of variable w(t, x) = y(t,x) — ¢(x)d(t).
It holds that, if yg € D(.A), there exists a unique solution y € W'1(0, co; L2(0, L))

Yt — Yxx = —WYy, (tvx) € (07 OO) X (OvL)v
t 0 S 07 t 07 )
yx(t,0) . € (0,00) (29)
yx(t, L) + Dsign(y(t,L) > d(t), t € (0,00),
y(0,x) = yo, x € (0,L).
Now, using the inverse of the backstepping transformation given by
X
2(t, %) = y(t,x) — / I(x, $)y(t,s) ds (30)
0
where the kernel I(x, s), is solution to
Ly — Iss = —(a(s) + w)l (x,5) € Q,
ls(x,0) =0, x € (0,L), (€]

0
I(x,x) = f% Joa(s) +wds,  x€ (0,

16



We conclude that, if

{zo € H%(0,L), such that y)(0) = 0 and yj(L) 4 Dsign(yo(L)) > O} , (32)

where yo(x) = zo(x) + [y k(x,5)zo(s) ds.

There exists an unique z € W51 (0, o0; L2(0, L)) solution to the closed-loop system

T = Ty = (15,
Zx(tz 0) =0,

zx(t,L) — k(L,L)z(t,L) — ka(L s)z(t,s) ds

z(0,x) = zp(x),

L
+Dsign (z (t,L) — [k(L,s)z(t,s) ds) >d(t),
0

(t,x) € (0,00) x (0,L),
€ (0,00),

(33)
t E (07 00)7

xe(0,L),
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Finally, the exponential decay follows from the continuity of the backstepping
transformation and its inverse.

That is, exist C;, and C,, positive constants such that

I12(8, 20,0y < Cully(t I,y < Cre”*lyoliF o) < C1Cae™ > |120lF2(0,1

(34)
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Uncontrolled state

Uncontrolled disturbed

system
Y — Yo = —WY,
(t, = 07
Y(t,0) (35)
]/x(t, L) = d(t)v
y(O, X) = Yo- E

Here we have choose as

disturbance,
d(t) = 2sin(2t), decay
parameter w = 1 and

initial condition
2
Yo=2(1-7%).
Figure 1: Uncontrolled state
19
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Uncontrolled L? norm

- ”yH%Z(O.L)
_672Wt|‘yﬂ‘|i?(0,11)

1 2 3 4 5 6 7 8 9 10
time

Figure 2: Uncontrolled L?(0, L) norm
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Controlled state

Controlled disturbed
system

Yt — Yy = —WY,

yx(£,0) =0,

yx(t,L) + Dsign(y(t,L)) > d(t)
]/(va) = Yo,

state

(36)

Simulations parameters,
d(t) = 2sin(2t), w =1 and
D=2y,=2(1-%).

Figure 3: controlled state
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Controlled L? norm

Figure 4:

T T T T
- ”yH%Z(O.L)
— e *lyoll 72,1
. . . . . .
0 1 2 3 4 5 6 7 8 9
time

controlled L?(0, L) norm
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Conclusions

e In this talk the rapid stabilization problem for an unstable heat equation under
boundary disturbances, was addressed.

e The control design rely on a combination of the backstepping method and the
suitable use of the multivalued operator sign(-).

e The well-possedness of the closed-loop system was proved by using the theory of
maximal monotone operators.

e Numerical simulations was performed in order to illustrate the theoretical results.
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Thanks for your attention!
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