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Control system and problem statement

Let us to consider the following unstable heat equation with Neumann control,
zt − zxx = az, (t, x) ∈ (0,∞)× (0, L),

zx(t, 0) = 0, t ∈ (0,∞),

zx(t, L) = u(t) + d(t), t ∈ (0,∞),

z(0, x) = z0(x), x ∈ (0, L),

(1)

where, T > 0, L > 0, the state z, a ∈ C([0, L]), the time-dependent function u is a boundary control and d is an
unknown disturbance.

Our goal is to design a feedback control which achieves a rapid exponential stabilization in presence of an
unknown boundary disturbance. That is, the decay rate of the system in closed loop is exponential with a rate
arbitrarily large.
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Literature overview

Many control approaches have been developed to deal with the stabilization problem in presence of

uncertainties in the context of PDE. Among them:

• Adaptive control:
1. Wei Guo and Bao-Zhu Guo. “Adaptive Output Feedback Stabilization for One-Dimensional

Wave Equation with Corrupted Observation by Harmonic Disturbance”. In: SIAM Journal on Control
and Optimization 51.2 (2013)

2. Tarek Ahmed-Ali et al. “Adaptive boundary observer for parabolic PDEs subject to domain and
boundary parameter uncertainties”. In: Automatica 72 (2016). ISSN: 0005-1098

• Active disturbance rejection control (ADRC):
3. Dong Zhang, Shu-Xia Tang, and Scott J. Moura. “State and Disturbance Estimator for Unstable

Reaction-Advection-Diffusion PDE with Boundary Disturbance”. In: 2019 Proceedings of the Conference
on Control and its Applications (CT)

4. Hongyinping Feng, Cheng-Zhong Xu, and Peng-Fei Yao. “Observers and Disturbance Rejection
Control for a Heat Equation”. In: IEEE Transactions on Automatic Control 65.11 (2020)
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Feedback design

The main idea behind the feedback design is to split the control as follows

u = u1 + u2. (2)

• u1 deals with the instability caused by the a.

• u2 deals with the boundary disturbance d.
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Feedback design: u1

Let us consider the following Backstepping transformation,

y(t, x) = z(t, x)−
x∫

0

k(x, s;ω)z(t, s) ds, (3)

where the kernel k is solution to
kxx − kss = (a(s) + ω)k (x, s) ∈ Ω,

ks(x, 0) = 0, x ∈ (0,L),

k(x, x) = − 1
2

∫ x
0 a(s) + ω ds, x ∈ (0,L),

(4)

where, Ω = {(x, s) : 0 ≤ s ≤ x ≤ L}, and ω is a positive constant which can be chose large.

• M. Krstic and A. Smyshlyaev. Boundary Control of PDEs: A Course on Backstepping Designs.
Advances in Design and Control. Society for Industrial and Applied Mathematic, 2008
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This transformation maps the following system
zt − zxx = az, (t, x) ∈ (0,∞)× (0, L),

zx(t, 0) = 0, t ∈ (0,∞),

zx(t, L)− k(L, L)z(t, L)−
∫ L

0 kx(L, s)z(t, s) ds = 0, t ∈ (0,∞),

z(0, x) = z0, x ∈ (0, L),

(5)

into this exponentially stable target system
yt − yxx = −ωy, (t, x) ∈ (0,∞)× (0, L),

yx(t, 0) = 0, t ∈ (0,∞),

yx(t, L) = 0, t ∈ (0,∞),

y(0, x) = y0, x ∈ (0, L).

(6)

Then, we choose u1 as follows

u1 design

u1(t) = k(L, L)z(t, L) +

L∫
0

kx(L, s)z(t, s) ds. (7)
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Feedback design: u2

We plug-in u1 into to the control system (1) and using the Backstepping transformation,
we get the following system

yt − yxx = −ωy, (t, x) ∈ (0,∞)× (0,L),

yx(t, 0) = 0, t ∈ (0,∞),

yx(t,L) = u2(t) + d(t), t ∈ (0,∞),

y(0, x) = y0, x ∈ (0,L).

(8)

multiplying (8) by y and performing an integration by parts, it holds

1
2

d
dt
‖y‖2

L2(0,L) + ω‖y‖2
L2(0,L) = −‖yx‖2

L2(0,L) + (u2(t) + d(t))y(t,L). (9)
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Feedback design: u2

u2 design

u2(t) = −Dsign(y(t, L)). (10)

where D > 0 is a constant.

Where

sign : IR −→ 2IR,

p 7−→ sign(p) =


p
|p| , if p 6= 0,

[−1, 1], if p = 0,
(11)

• A1 There exist a positive constant D, such that |d(t)| ≤ D, for all t ≥ 0.

with this we obtain that (thanks to psign(p) = |p|)

−‖yx‖2
L2(0,L) − Dsign(y(t, L))y(t, L) + d(t)y(t, L) ≤ 0, ∀t ≥ 0. (12)

therefore the solution y, satisfies that ‖y(t, ·)‖2
L2(0,L)

≤ e−2ωt‖y0‖2
L2(0,L)
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Feedback design

Feedback law u in variable z

u(t) = k(L, L)z(t, L) +

L∫
0

kx(L, s)z(t, s) ds− Dsign

z(t, L) +

L∫
0

k(L, s)z(t, s) ds

 (13)

Then the closed-loop system is given by

zt − zxx = az, (t, x) ∈ (0,∞)× (0, L),

zx(t, 0) = 0, t ∈ (0,∞),

zx(t, L)− k(L, L)z(t, L)−
L∫
0

kx(L, s)z(t, s) ds

+Dsign

(
z(t, L)−

L∫
0

k(L, s)z(t, s) ds

)
3 d(t), t ∈ (0,∞),

z(0, x) = z0(x), x ∈ (0, L),

(14)
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Well-possedness of the closed-loop system

To begin with, we apply the backtstepping transformation to previous closed-loop system to get
yt − yxx = −ωy, (t, x) ∈ (0,∞)× (0, L),

yx(t, 0) = 0, t ∈ (0,∞),

yx(t, L) + Dsign(y(t, L) 3 d(t), t ∈ (0,∞),

y(0, x) = y0, x ∈ (0, L).

(15)

Let us consider the following change of variable

w(t, x) = y(t, x)− φ(x)d(t) (16)

where φ : [0, L]→ IR is a function smooth enough such that φ′(0) = φ(L) = 0 and φ′(L) = 1. Then, w satisfies the
following differential inclusion

wt − wxx = −ωw + f , (t, x) ∈ (0,∞)× (0, L),

wx(t, 0) = 0, t ∈ (0,∞),

wx(t, L) + Dsign(w(t, L)) 3 0, t ∈ (0,∞),

w(0, x) = w0(x), x ∈ (0, L),

(17)

where f = −φḋ + φ′′d + ωφd.
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Let us introduce the following operator

A : D (A) ⊂ L2(0, L) −→ L2(0, L), (18)

p 7−→ Ap = −p′′ + ωp, (19)

where ω > 0 and the domain D(A) is given by

D (A) =
{

p ∈ L2(0, L)/Ap ∈ L2 : p′(0) = 0, p′(L) + Dsign(p(L)) 3 0
}
. (20)

Remark
The operatorA is not linear.

Now, the differential inclusion (17) can be written in a operator form as follows,{
wt +Aw = f , t ∈ (0,∞),

w(0) = w0.
(21)

Our first task is to prove the well-posednes of (21). To do that, we prove the following result

Proposition

The operatorA is a maximal monotone operator.
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Proof proposition 3.1

By Minty’s theorem, A is a maximal monotone operator if and only if

1. A is monotone, i.e for all u, v ∈ D(A), (A(u− v),u− v)L2(0,L) ≥ 0.

2. For any f ∈ L2(0,L) there exist p ∈ D(A) such that

p +Ap = f ,

almost everywhere x ∈ (0,L).
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In order to prove that operator I +A has full rank.

Let us consider the Hilbert space H1(0, L) and the following functional, J : H1(0, L) −→ IR, defined by

J (p) =
1
2

L∫
0

(p′)2 + (ω + 1)p2 − fp dx + ϕλ(p(L)), (22)

where,

• ϕλ : IR→ IR is the Moreau Regularization of the function

ϕ : IR→ IR ϕ = D|x|.

Besides,

• α(x) = (∂ϕ)(x) = Dsign(x),

• Jλ = (I + λα)−1, the resolvent of α.

• αλ : IR→ IR, αλ = 1
λ

(I − Jλ). (The Yosida Approximation of α)

By the Moreau Theorem, ϕλ is a convex, differentiable function and

ϕλ(x) =
λ

2
|αλ|2 + ϕ(Jλ(x)), ϕ′λ(x) = αλ(x).
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Lemma

For all λ > 0 and for all f ∈ L2(0, L), there exist a minimizer mλ of J such that mλ ∈ H2(0, L) and{
mλ +Amλ = f x ∈ (0, L), a.e.

m′λ(0) = 0 m′λ(L) + αλ(mλ(L)) = 0.
(23)

Moreover, the minimizer mλ satisfies the following inequalities. There exist positives constants Ci, i ∈ {1, 2, 3} such
that, for any λ > 0

‖mλ‖H1(0,L) ≤ C1‖f‖L2(0,L), (24)

|αλ(mλ(L))| ≤ C2‖f‖L2(0,L), (25)

‖mλ‖H2(0,L) ≤ C3‖f‖L2(0,L). (26)

Finally, it can be prove that (mλ)λ>0 converges to m solution to{
m +Am = f x ∈ (0, L), a.e.

m′(0) = 0 m′(L) + Dsign(m(L)) = 0
(27)

when λ→ 0+. ThereforeA is a maximal monotone operator.
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• A2 Let us assume that d ∈ W2,1(0,∞) and d(0) = 0.

This implies that f ∈ W1,1(0,∞; L2(0, L)), then by following theorem

Theorem (Kato, Theorem 4.1 in [2)
] Let B be a maximal monotone operator, z0 ∈ D(A) and g ∈ W1,1(0,∞; L2(0, L)). Then there exisit a unique
z ∈ W1,1(0,∞; L2(0, L)) such that

1. z(0) = z0,

2. zt + Bz 3 g a.e t ∈ (0,∞),

3. z(t) ∈ D(A) a.e t ∈ (0,∞).

Thus, if w0 ∈ D(A), there is an unique solution w ∈ W1,1(0,∞; L2(0, L)) to{
wt +Aw = f , t ∈ (0,∞),

w(0) = w0
(28)

[2 ] R. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Vol. 49.
Mathematical Surveys and Monographs. American Mathematical Society, 1997.
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By the change of variable w(t, x) = y(t, x)− φ(x)d(t).

It holds that, if y0 ∈ D(A), there exists a unique solution y ∈ W1,1(0,∞; L2(0, L))
yt − yxx = −ωy, (t, x) ∈ (0,∞)× (0, L),

yx(t, 0) = 0, t ∈ (0,∞),

yx(t, L) + Dsign(y(t, L) 3 d(t), t ∈ (0,∞),

y(0, x) = y0, x ∈ (0, L).

(29)

Now, using the inverse of the backstepping transformation given by

z(t, x) = y(t, x)−
x∫

0

l(x, s)y(t, s) ds (30)

where the kernel l(x, s), is solution to
lxx − lss = −(a(s) + ω)l (x, s) ∈ Ω,

ls(x, 0) = 0, x ∈ (0, L),

l(x, x) = − 1
2

∫ x
0 a(s) + ω ds, x ∈ (0, L),

(31)
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We conclude that, if {
z0 ∈ H2(0, L), such that y′0(0) = 0 and y′0(L) + Dsign(y0(L)) 3 0

}
, (32)

where y0(x) = z0(x) +
∫ x

0 k(x, s)z0(s) ds.

There exists an unique z ∈ W1,1(0,∞; L2(0, L)) solution to the closed-loop system

zt − zxx = az, (t, x) ∈ (0,∞)× (0, L),

zx(t, 0) = 0, t ∈ (0,∞),

zx(t, L)− k(L, L)z(t, L)−
L∫
0

kx(L, s)z(t, s) ds

+Dsign

(
z(t, L)−

L∫
0

k(L, s)z(t, s) ds

)
3 d(t), t ∈ (0,∞),

z(0, x) = z0(x), x ∈ (0, L),

(33)
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Finally, the exponential decay follows from the continuity of the backstepping
transformation and its inverse.

That is, exist C1, and C2, positive constants such that

‖z(t, ·)‖2
L2(0,L) ≤ C1‖y(t, ·)‖2

L2(0,L) ≤ C1e−2ωt‖y0‖2
L2(0,L) ≤ C1C2e−2ωt‖z0‖2

L2(0,L) (34)
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Uncontrolled disturbed
system

yt − yxx = −ωy,

yx(t, 0) = 0,

yx(t,L) = d(t),

y(0, x) = y0.

(35)

Here we have choose as
disturbance,
d(t) = 2 sin(2t), decay
parameter ω = 1 and
initial condition
y0 = 2(1− x2

2 ).

Figure 1: Uncontrolled state
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Figure 2: Uncontrolled L2(0, L) norm
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Controlled disturbed
system

yt − yxx = −ωy,

yx(t, 0) = 0,

yx(t,L) + Dsign(y(t,L)) 3 d(t),

y(0, x) = y0,

(36)

Simulations parameters,
d(t) = 2 sin(2t), ω = 1 and
D = 2, y0 = 2(1− x2

2 ).

Figure 3: controlled state
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Figure 4: controlled L2(0, L) norm
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Conclusions

• In this talk the rapid stabilization problem for an unstable heat equation under
boundary disturbances, was addressed.

• The control design rely on a combination of the backstepping method and the
suitable use of the multivalued operator sign(·).

• The well-possedness of the closed-loop system was proved by using the theory of
maximal monotone operators.

• Numerical simulations was performed in order to illustrate the theoretical results.
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Thanks for your attention!
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