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Effects of delay on stability of PDEs

For PDEs arbitrarily small delays may destabilize the system

[Datko, SICON’88], [Logemann et al., SICON'96], [Wang, Guo & Krstic, SICON'11]

The stability of wave eq. is not robust w.r.t. arbitrary small delay:

Ztt(gat) = ZEE(Eat)v 5 € (0> 1)7
2(0,t) =0, z(1,t) = —2z(1,t —h)

For h = 0 all solutions are zero for t > 2!

For arbitrary small h > 0 the system has unbounded solutions



Networked control systems are systems, where sensors, controller
and actuators exchange data via communication network.

Benefits: long distant estimation/control, etc.
Imperfections: variable sampling + delays + ...



Motivation: network-based control of PDEs

Chemical reactors
Air-polluted areas

Multi-agents

800 drone show in Nanchang: multi-agent deployment



Motivation: network-based control of PDEs

Chemical reactors
Air-polluted areas

Multi-agents

800 drone show in Nanchang: multi-agent deployment

Objective - robust to input/output delays control of PDEs



Simple Lyapunov functionals for ODEs with tvr delays

z(t) = Az(t) + Arz(t — 7(t)), 7(t) <h.

t

Employ z(t — 7) = z(t) — ft_T z(s)ds =
@(t) = (A+ Ap)a(t) — Alfj_T(t) i(s)ds.

Vp(z(t)) = 2T (t) P (t) =

%vp — 2T (B P[(A + A)a(t) — Ar / #(s)ds].

t—7(t)
The simplest LKF V = Vp + Vi [EF & U. Shaked, TAC'02]:

Va(i) = [, (s — t + h)iT (s)Ri(s)ds, R > 0.

4 Va(iv) < haT(ORi() — [ (o &7 (8 Ri(s)ds



Simple Lyapunov functionals for ODEs with tvr delays

z(t) = Az(t) + Arz(t — 7(t)), 7(t) <h.

Employ z(t — 7) = z(t) — f:_T z(s)ds =

() = (A+ Aa(t) — Alf , (s)ds.

T(t

Vi(a(t) = 2T () Pa(t) =
%vp — 2T (B P[(A + A)a(t) — Ar / #(s)ds].
t—7(t)

The simplest LKF V = Vp + Vi [EF & U. Shaked, TAC'02]:
Va(i) = [, (s — t + h)iT (s)Ri(s)ds, R > 0.

. . . t . .
%VR(M) < haT () Ri(t) — Lﬂ_(t) T (s)Ri(s)ds

For sawtooth delay 7(t) =t — t;, Wirtinger-based LKF [K. Liu & EF, Aut’12]:

Vr(t,2t) = h? f T (s)Ri(s)ds — T f (s) — z(tx)]T R[z(s) — x(ty)]ds,
R>0, te [tk,tk+1)



Extension of LKF to Hilbert space: A generates Cy semigroup + A1 bounded
[EF & Y. Orlov, Aut’09]

For detailed introduction to time-delay & sampled-data & networked control systems see

Emilia Fridman

Introduction
to Time-Delay

Systems

® Birkhiuser




Introduced in [EF & Blighovsky, Aut '12] for the heat equation
N
zt(z, 1) = zzz(z,t) + ¢ (2,2, t) 2(2,t) + Z bj(x)u;(t), 22(0,t) =2:(1,t) =0
j=1
with z: [0,1] X [0,00) = R and |¢(z,z,t)| < q.
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Introduced in [EF & Blighovsky, Aut '12] for the heat equation
N
zt(z, 1) = zzz(z,t) + ¢ (2,2, t) 2(2,t) + Z bj(x)u;(t), 22(0,t) =2:(1,t) =0
j=1
with z: [0,1] X [0,00) = R and |¢(z,z,t)| < q.

¢ i i
i
Zo fT:vl Ty Zj :ij Zjq1 ) :TI:N l X
Point measurements:
_ _ Tj—1+x;
yj(t) = z(wjrtk)v Tj = Ta te [tkatk+1)

Static output-feedback: sampled-data via ZOH

Uj(t) = —Kz(:ij,tk), te [tk,tk+1),
bj (:E) = X[Zj,a:j+1)(x)'



Spatial decomposition: delayed control via direct L-K

Extensions to delayed and network-based control via direct Lyapunov-Krasovskii (LK):
Averaged measurements, ND semilinear heat, Ho, control - [N. Bar Am & EF, Aut '14]
Event-triggered, 2D under pointlike measurements - [A. Selivanov & EF, Aut '16,18]
KSE (1D, 2D), KdVB - [W. Kang & EF, Aut '18,19; TAC '22]

Damped wave, beam - [M. Terushkin & EF, Aut '19; SCL '20]

Application to deployment of multi-agents - [J. Wei et al Aut’19]; [Terushkin & EF, Aut '21]
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Drawback: many actuators covering (almost) all domain & many sensors.

Challenges:

Few actuators & sensors

Boundary control & measurement = direct LK for PDE may not work!



Spatial decomposition: delayed control via direct L-K

Extensions to delayed and network-based control via direct Lyapunov-Krasovskii (LK):
Averaged measurements, ND semilinear heat, Ho, control - [N. Bar Am & EF, Aut '14]
Event-triggered, 2D under pointlike measurements - [A. Selivanov & EF, Aut '16,18]

KSE (1D, 2D), KdVB - [W. Kang & EF, Aut '18,19; TAC '22]
Damped wave, beam - [M. Terushkin & EF, Aut '19; SCL '20]
Application to deployment of multi-agents - [J. Wei et al Aut’19]; [Terushkin & EF, Aut '21]

Drawback: many actuators covering (almost) all domain & many sensors.

Challenges:
Few actuators & sensors

Boundary control & measurement = direct LK for PDE may not work!

[Karafyllis & Krstic, Aut'18] introduced sampled-data boundary control for heat eq
via modal decomposition - state-feedback

Our objective - finite-dim output-feedback via modal decomposition
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Finite-dim. observer-based control - problem formulation

Rami Katz (PhD, Tel Aviv University)

In [Rami Katz & EF, Aut'20] control of heat eq:
zt(2,t) = O (p(2)22 (2, 1)) + (gc — q(2)) 2(z, t) + b(z)u(t), t >0,
Zz(ort) = Z(lvt) = 0;
y(t) = 2(0, ).
p € C?[0,1], q € C[0,1] satisfying
0<ps« <plx)<p", 0<¢g(z) <g¢", z€[0,1]
be HY(0,1), b(1) =0

Non-local actuation and boundary measurement



Finite-dim. observer-based control - problem formulation

Rami Katz (PhD, Tel Aviv University)

In [Rami Katz & EF, Aut'20] control of heat eq:
zt(2,t) = O (p(2)22 (2, 1)) + (gc — q(2)) 2(z, t) + b(z)u(t), t >0,
Zz(ort) = Z(lvt) = 0;
y(t) = 2(0, ).
p € C?[0,1], q € C[0,1] satisfying
0<ps« <plx)<p", 0<¢g(z) <g¢", z€[0,1]
be HY(0,1), b(1) =0

Non-local actuation and boundary measurement

For simplicity, consider p(z) = 1, ¢(z) =0 and ¢. = q.



Sturm-Liouville problem:

¢" () + Ap(x) =0, 0<z<L; ¢(0)=0, ¢(1)=0.

— Corresponding eigenvalues \; < Ao < ... satisfy lim,,_soo Ay, = c0.

— Complete and orthonormal (in L?(0,1)) sequence of eigenfunctions.

Here \,, = w2 (n— %)2, on(z) = V2cos(vInz), n>1.



Finite-dim. observer-based control - modal decomposition

Sturm-Liouville problem:

¢"(z) + Ap(z) =0, 0<z<1; ¢'(0)=0, ¢(1)=0.

— Corresponding eigenvalues A1 < A2 < ... satisfy limy, 00 Ap = 00.

— Complete and orthonormal (in L? (0,1)) sequence of eigenfunctions.

Here A\, = 72 (n — —) on(z) = V2cos(vInz), n>1.

Modal decomposition:

Zzn t)¢n(»’0 Zn ) = <Z(’7t)7¢n>7 t>0.

n=1
Differentiation of (z(-,t), ¢n) + integration by parts:

Zn(t) = (=An + @)zn(t) + bnu(?),
Zn(o):<207¢n>— 20,n; bn—( ¢n>, n=12..



Modal decomposition

Finitely many “relatively unstable” eigenvalues

Finite
dimensional part

Fourier

State Transform

Infinite
dimensional part

Popular in 80s - [Curtain, TAC '82, '92], [Balas, JMAA '88].
Popular again because of

» robustness to sampling/delay:
state-feedback [Karafyllis & Krstic, Aut'18],
finite-dimensional observer  [Selivanov & EF, TAC'19]

» input delay compensation:
state-feedback [Prieur & Trelat, TAC'18; Lhachemi et al, Aut'19]



Works on observer-based control via modal decomposition

Finite-dimensional observer-based control: bounded control & observation operators

1. [Curtain, TAC'82] - restrictive assumptions (b, =0, n > No ).

2. [Balas, JMAA'88] - qualitative result:
for large enough "residual mode filter” dimension.

3. [Harkort & Deutcher, 1JC'11] - 1st step to quantitative results:
conservative estimates on "output filter” and difficult to compute.

Delayed observer-based control via modal decomposition:

1. [Katz & Fridman & Selivanov, TAC'21] - PDE observer (separation).

Our goal:
easily verifiable and efficient conditions for finite-dimensional observer-based controller.



Zn(t) = (=An + @)2zn(t) + bru(t), n=12,..
Let 6 > O be a desired decay rate. Let Ny € N satisfy
—An+q¢< -0, mn>Np.

N - controller dimension,
N > Ny - observer dimension.

> Finite-dimensional observer: 2(z,t) := Zgzl 2n(t)dn(z)

En(t) = (<A + Q)20 (1) + bnu(t) — L[S0 20 (8)én(0) — y(t)]
2,(0)=0, 1<n<N.



Observer and controller gains are designed independently based on Ny modes:

> Observer: Let

Ao = dla‘g{_>\1 +Qa"'7_>‘N0 +q}7 Lo = [lla'“leo]T:
Co =le1,..-,¢np]s en = @n(0), n>1.
Since ¢, # 0 for 1 < n < Ny, (Ag, Co) is observable with Lg found from
Py(Ag — LoCo) 4 (Ag — LoCo)T Py < =28P,, Py > 0.

Choose I, =0, n > Np.

> Controller: Assume by, = (b, ¢p,) # 0 for 1 <n < Np. Let

T
Bo = [bl bNO] .
Then (Ao, Bo) is controllable. Let Ko € R!*No satisfy
P:(Ag + BoKo) + (Ao + BoKo)T P. < =26P., P.>0



We propose a Np-dimensional controller:
ut) = Koz™o(t), 2No(t) = [21(0),..., 2n ()T

based on the N-dimensional observer.

Let en(t) = 2n(t) — 2n(¢), 1 <n < N. The error equations can be presented as:

éMﬂ=PM+®%@—M(Zid%%w+ ylgnSN

(1)
~—~
200-3" enza(t)



Control law and estimation error

We propose a Np-dimensional controller:
u(t) = KozNo(t), 2N0(t) = [21(8), ..., 2 (1))

based on the N-dimensional observer.
Let en(t) = z2n(t) — 2n(t), 1 <n < N. The error equations can be presented as:

2 =(— z — N Cnén t R n .
én(t) = (—n + @)an(t) zn(zn:1 () + D ) 1<n<N

z(().t)fzle cnzn (t)

Denote
eNo(t) = [e1(t), ..., en, (D],
6N7N0 (t) = [6N0+1(t)7 ey eN(t)]T 5
gN=No(1) = [Eng41(t), .-, 2 ()],

E = CO| {L077L0702(N—N0)><1} 5

K =[Ko, Oix@an-ng)]:

Ay =diag{-Anyg+1+ G-, —AN +q},

C1 = [eNg+15---5¢N], Bi= [bNU+17---7bN]T



Closed-loop system for t > 0:
X(t) = FX(t) + £4(1),
Zn(t) = (=An + Q)zn(t) + b KX (1), n > N,

where
X(t) = col {:2N° (t),eNo(t), 2N ~No(¢), N —No (t)} e R2N
Ao + BoKo LoCo 0 LoCy
F = 0 Ao — LoCo 0 —LoCl
- B1Ko 0 Ay 0
0 0 0 Ay
We have

) = [200,0) = XN 6n(0)2n ()] 22
< |z = 20 6 O] = T4y A2 (0)



For H!-stability we use

V(t) = XT(#)PX(t) + Z Anz2(t), 0< PeR2NX2N,
n=N+1

Differentiating along the closed-loop system:

V426V = XT(t) [PF+ FTP +26P] X (t) + 2X T (t) PL( (1)

+2 Z:‘;NH An(=An +q+0)22(t) + ZZ":NH 220 (H) Anbr K X (1).



Finite-dim. observer-based control - Stability analysis

For H!-stability we use

V() = XT(#)PX () Z Anz2(t), 0< PeR2N*2N,
n=N+1

Differentiating along the closed-loop system:

V426V =XT(t)[PF+ FTP+ 2513] X(t) + 2XT (£)PLL(t)
2 0 v (A g+ 02 () + D0 L 220 (D Anbn KX(2).

We apply Young's inequality to the cross terms:

) oo 2 =~ 2
o N1 2Anzn (Db KX (1) < 2 N 22O eVl [[KX @)

Then
E 1 2 1 2
2 >\n<_>\n+q+6+£)zn(t)§—2(>\N+1—q—5—£)<(t)

n=N+41



Let (t) = col {X (¢),¢(¢)}. The stability analysis leads to
V 426V <nT(t)®n(t) <0
provided

PF+FTP+25P +a||v |21“<Tf( PL
D = <0
* —Z(AN+1—q—(5—%)

Can be converted to LMI by Schur complement.



Finite-dim. observer-based control - Stability analysis

Let n(t) = col {X(¢),¢(t)}. The stability analysis leads to
V+25V < npf(t)@n(t) <0
provided

*RTR PL

PF+FTP+26P+a‘b/
1

b =
* —2(AN+1—q—6—ﬁ

) < 0.

Can be converted to LMI by Schur complement.

Observations:
The LMI dimension grows with N
||[P]| can grow - may lead to infeasibility for all N € N

Qur contribution:
Derivation of constructive LMI condition.

Proof of feasibility for large NV
(based on asymptotic analysis - to bound || P||).



> Summarizing:

Given & > 0, if there exist 0 < P € R2VX2N and o > 0 that satisfy the LMI,
then
I2C O3+ 12C,8) = 2C, O30 < Mem 2 ||z,
with some constant M > 0. Moreover, the LMI is always feasible for large enough N.



Finite-dim. observer-based control - Stability analysis

Summarizing:

Given § > 0, if there exist 0 < P € R2VX2N and o > 0 that satisfy the LMI,
then

I2C O3+ 12C,8) = 2C, O30 < Mem 2 ||z,
with some constant M > 0. Moreover, the LMI is always feasible for large enough N.

Other cases treated in [Katz & EF, Aut '20] :
— Non-local measurement and actuation - L? and H! stability
1
— Dirichlet actuation and non-local measurement - H ™ 2 stability (V = Z)\fblzg)
In this case,
|brn] =~ \/ An

which is difficult to compensate in the Lyapunov analysis even for the L2-norm.



Point measurement & actuation - dynamic extension

[Katz & EF, CDC '20; TAC'22]
Kuramoto-Sivashinsky equation (KSE)

Zt(x, t) = _Zzzzz(x7 t) - szz(xat)7 t>0,

2(0,8) = u(t), z(1,t) =0,
zm(O t) =0, zzz(1,t)=0.
Measurement : y(t) = z(z4,t), z« € (0,1)
Mixed Dirichlet boundary conditions.

Point measurement and boundary actuation - unbounded operators.



Point measurement & actuation - dynamic extension

[Katz & EF, CDC '20; TAC'22]
Kuramoto-Sivashinsky equation (KSE)

Zt(x, t) = _Zzzzz(x7 t) - szz(xat)7 t>0,

2(0,8) = u(t), z(1,t) =0,
zm(O t) =0, zzz(1,t)=0.
Measurement : y(t) = z(z4,t), z« € (0,1)
Mixed Dirichlet boundary conditions.

Point measurement and boundary actuation - unbounded operators.
Dynamic extension [Curtain & Zwart, 95], [Prieur & Trélat, Aut '18], [Katz & EF, Aut '21]:
w(z,t) = 2(z,t) —r(x)u(®), r(z)=1-=

Results in better behaved {b,}.2; = convergence in stronger norms.



Point measurement & actuation - dynamic extension

Existing results on KSE:
Distributed state-feedback/observer-based control via modal decomposition
[Christofides & Armaou. SCL '00]

Boundary control, small anti-diffusion
[Liu & Krsti¢. Nonlin Analysis. '01]

State-feedback stabilization of KSE under boundary/non-local actuation
[Cerpa. Commun. Pure Appl. Anal, '10], [Cerpa, Guzman & Mercado. ESAIM, '17],
[Guzman, Marx & Cerpa. CPDE '19]

— Different boundary conditions = no explicit estimates on eigenvalues and
eigenfunctions
— Theoretically possible but computationally expensive



Point measurement & actuation - dynamic extension

Equivalent ODE-PDE system:
u(t) =v(t), wi(z,t) = —wWegae(T,t) — vwae(z,t) — r(z)v(t)

with
u(0) =0,

w(0,t) =0, w(l,t)=0,
wzz(0,t) =0, wzz(1,t) =0.

New measurement: y(t) = w(x«,t) + r(x)u(t).
u(t) - additional state, v(t) - control input
Given v(¢), u(t) is computed by
u(t) =v(t), »(0)=0

Modal decomposition using Sturm-Liouville operator for KSE:

An = 7202, ¢n(x) = V2sin(\/ Anz), n>1



w(z,t) = an(t)¢n(73)
n=1
4
Wn () = (=22 + vAn)wn (£) + bro(t), wn(0) = (20, dn),

n = — )\i £2(N) sequence, nonzero elements.
n



Point measurement & actuation - modal decomposition

w(z,t) = Z W (t)fn ()
n=1

4
Wn () = (=AZ + vAp)wn (t) + bpo(t), wn(0) = (20, ¢n),
bn = —4/ % £2(N) sequence, nonzero elements.
Let 6 > 0 be a desired decay rate. Let Ny € N satisfy:
A2 4 vAy < =6, n > Np.

N > No-dimensional observer: w(z,t) = Zivzl W, (t)n ().

Wn () = (A2 + VA (£) + bno(t) — bn [0(2s, t) + (@ )ult) — y(£)], t>0

No + 1-dimensional observer-based controller:

o(t) = Kow™No(t), Mo () = [u(t), w1(2),..., DN, ()] .



Closed-loop system for t > 0:
X(t) = FX(t) + £¢(1),
W (t) = (=A2 + vAp)wn(t) + b KX (1), n> N,

where
X (t) = col {0 (£), eNo (), NN (1), N N0 (1) }
Ao + BoKo .Z/()Co 0 EgCl
P 0 Ao —LoCo 0 —LoCy
- B1 Ky 0 Ay 0
0 0 0 Ay
Furthermore,

N

(1) < [Jwr ) = DN w064, 0)||” < 5 1y Awd (1)



For H'-stability we use

oo
v(t) = XT()PX(t) + Z Anw? (1),
n=N+1
where P > 0, leading to LMls:
T a 1T 7
[PF+F P+2;5P+ S KK Ijﬂ <o,

2648
[ ANt1 +Vv+ DT \/Li:l <o.

* —Q



Point measurement & actuation - stability analysis

For H'-stability we use

V() = XT(#)PX () + Z Anw? (1),
n=N-+41
where P > 0, leading to LMIs:

T 2a 7T 2
[PF+F P+ 26P + - KTK PC} <o,
* -8
_ 2048 1
[ AN+ +v 4 g \/5} <o
* —«

If there exists 0 < P € RCN+1)X(2N+1) 3nd scalars «, 8 > 0 s.t. the LMIs hold, then:
lw( Ol g1 + @]+ lw(, t) =, )l g1 < Me=5 lw(-,0)[| g1 -

with some constant M > 0.



Consider
zt(z,t) = —zzzzz(z,t) — 10222 (x, 1),
Z(Oa t) = u(t)a Z(]_,t) =0,
222(0,8) =0,  zz2(1,t) = 0.

with y(t) = z(7~1,t). The open-loop is unstable.



Consider

zt(z,t) = —zzzzz(z,t) — 10222 (x, 1),
Z(Oa t) = u(t)a Z(]_,t) =0,
222(0,8) =0,  zz2(1,t) = 0.

with y(t) = z(7~1,t). The open-loop is unstable.

> Letd=1— No=1.
P The observer and controller gains:

Ko = [7.1415,26.0901], Lo = 2.3419.

> LMls are feasible for N,,;,, = 3.

Simulations — the same N,,;,, = 3 that preserves stability!



In(V(1)) Vs. t - KSE
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Initial condition: u(0) = 0, z(z,0) = w(z,0) = (z — z2)3, z € [0,1].
Computed linear fits (log-linear scales):
py(t) ~ —2.0898t + 2.2112.

Close to theoretical 26 = 2.
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Initial condition: u(0) = 0, z(z,0) = w(z,0) = (z — z2)3, z € [0,1].
Computed linear fits (log-linear scales):

py (t) = —2.0898¢ + 2.2112.

Close to theoretical 26 = 2.

> Point measurement & actuation for heat eq in [Katz & EF, EJC '21]



In [Katz & EF,TAC'22] we consider

zt(x,t) = —2zzzzz (@, t) — Vg (z,t) + d(z, 1),
2(0,t) = u(t), z(1,¢t) =0, 222(0,t) = zzz(1,t) =0

with in-domain point measurement
y(t) = z(z«,t) + o(t), z« € (0,1).
The disturbances satisfy

d € L%((0,00); L2(0,1)) N H _((0,00); L(0,1)),

oC
o € L2(0,00) N H! _(0,00).

Dynamic extension:
w(z,t) = 2(z,t) — r(z)ult), r(z):=1-—=x



Let v > 0 and py, pu > 0 be scalars. We introduce the performance index

T = [ [l 0122 + p2u2(t) = 2 (IldC, Dl + 02(1)] dt.



L2-gain and ISS analysis

Let v > 0 and py, pu > 0 be scalars. We introduce the performance index
I = [ [0 (- D2 + p2u2() =42 (IldC, O3z +02()] dt
We find conditions that guarantee along the closed-loop

V+%V+W§Q
W = o}, [, )72 + P (®) =72 (I, D)1z +02(1)) ,
V(t) = [XN@OIB+ D007 vy Anwi (D)

4
§=0=J<0

§>0and py = py =0= 1SS, i.e. for some M > M > 0:

M )2 + (-, )13 ] <Me=5T [jw(-, 0)[2:
2
+2 supoci<r [0, D32 +02(8)] VT >0,



L2-gain and ISS analysis

Our L2-gain analysis results in the following LMI:

) 4= PL P PC
1) _ (1) AN+1 AN+1
Uy = * —2 (0N+1 T T2a "~ T3y ) 0 0 <0,
* ‘ —721
o)) = PF+ FTP 4 25P + 2% K Ko,
Pu 0 0 0 0
E:E’{Ely El = 0 pwlno pwlNo 0 0 .
0 0 0 pwIN—Ng PwIN-—Ng

Novelty: proof of the LMI feasibility for large enough v and N

=: positive term, which is not multiplied by a decision variable

and does not decay with N (compare with ﬂ%‘}v KTK)

For ISS with d(x,t) = 0, the LMI feasibility for N implies its feasibility for N + 1.
Thus, increasing N does not deteriorate the performance.
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[Katz & EF, Aut '21]

ze(2,t) = zza (2, t) + qz(z,t) + b(z)u(t — 70 (1)),
22(0,t) =0, 2(1,t) =0,

y(t) = 2(0,t — 7y (1))

Consider b € H'(0,1), b(1) = 0.
> 7y (t) - known measurement delay, 7y (t) < Tar
» 7, (t) - unknown input delay, 7, (t) < 7as

» (1 delays or sawtooth delays (correspond to sampled-data or networked control)



Delayed implementation - problem formulation

[Katz & EF, Aut '21]

zt(x,t) = zga (2, t) + qz(z,t) + b(z)u(t — 70 (t)),
2z2(0,t) =0, z(1,t) =0,

y(t) = 2(0,t — 7y (1))

Consider b € H'(0,1), b(1) = 0.
Ty (t) - known measurement delay, 7 (t) < 7ar
Tu(t) - unknown input delay, 7, (t) < 7as

C" delays or sawtooth delays (correspond to sampled-data or networked control)

Zn(t) = (=An + Qzn(t) + bnult — 7u(t)),
Z"(O) = <207¢’ﬂ> =!20,n; by = (bv ¢n> .

Let No € N satisfy
_>\n+q<_5r, n > Noy.

Ng - the controller dimension. N > Ny - the observer dimension.



Delayed implementation - observer design

Finite-dimensional observer: 2(z,t) := ij:l Zn(t)pn(z).

En(t) = (=An + @)2n(t) + bpult) — o [N entnlt — 7y (1) — u(t)] ,
2n(t) =0, t<0, cn=0n(0)=+v2, 1<n<N.

{en}g:1 - scalar observer gains.

Controller: u(t) = Koz™o(t).

Closed-loop system for ¢ > 0:

X(t) = FX() + FiX(t — 7y (1) + Fa KX (¢ — () + LC(E = 7y(1)),
2n(t) = (=An + Q) zn(t) + b KX (t — 7w (), n > N.

Clt=m)< > An(t—my(®)

n=N+1



We use Lyapunov functional for [ '-stability

V(t) = Vaom(t) + 37, Vi, () + 3o, VR, (1),
Voom(t) = XT(t)PX (t) + Z;‘;NH Anz2(t),

> Vs, (t) and Vg, (t) compensate delays in X (t)
> Halanay inequality to compensate ((t — 7,(1)):

Let 0 < 61 < g and V : [—7,00) — [0,00) be an absolutely continuous s.t.

V() + 250V (t) =261 sup V(t+6) <0, t>0.
—7<6<0

Then V(t) < e 2vtsup__ 4 V(6), t > 0 where 6; = o — 612977

—2618up_,,, <g<o V(t+0) < =201 | X (¢t - Ty ()% —261C2(t — 7y (t))

> We prove: the resulting LMIs are feasible for large N and small 7.



[Katz et al, ECC'21 & Aut under review]
Consider heat equation with Neumann actuation

zt(x,t) = zml‘(x’t) + qz(x,t),
22(0,t) =0, zz(1,t) = u(t).

Non-local measurement
y(t) = (C, Z('at»a ce L2(Oa1)'



[Katz et al, ECC'21 & Aut under review]
Consider heat equation with Neumann actuation

zt(x7t) = Zﬂ'il‘(xft) + qz(wvt)7
22(0,t) =0, zz(1,t) = u(t).

Non-local measurement
y(t) = (C,Z(-,t)), S L2(0,1).
> No dynamic extension for L2-stability:

= A =72n2, n>0; do(x) =1, ¢n(x) = V2sin(vAnz), n>1

Zn(t) = (=An + @)zn (t) + bpu(t), t > 0,
bo=1, by, =(-1)"v2, — (>®(N)

— The estimation error tail ((t) satisfies

SIGRS el Y ng1 (D),



The reduced-order closed-loop system is given by
Xo(t) = FoXo(t) + LoCre™N Mo (t) + LoC(t),
Zn(t) = (=An + @)zn(t) + bnKo Xo (1), n > N.
where

Fo = Ao — LoCo

Ao + BoKo LoCo ]
0 ’
Xo(t) = col {£No(#),eNo (1) }.

What about 2N ~No(¢) and eN—No(t)?

EN=No () = A1 2N=No(t) + B1KoXo(t) = exp. decaying provided Xo(t) is
eN=No(t) = A;eN—No(y) = exp. decaying



Reduced-order closed-loop system

The reduced-order closed-loop system is given by
X()(t) = FoXo(t) + LoCreN—No (t) + LoC(1),
Zn(t) = (=An + @zn(t) + bnKoXo(t), n > N.
where
Fy = |40+ BoKo LoCo
0= 0 Ao — LoCo |’

Xo(t) = col { Mo (t),eNo (1) }.

What about 2V ~No(¢) and eN—No(¢)?

EN=No(4) = 412N~ No () 4 B1KoXo(t) = exp. decaying provided Xo(t) is
eN=No(t) = A;eN—No(z) = exp. decaying

Advantages of the reduced-order closed-loop:

— Takes into account the fast-slow structure of the dynamics
— Reduced-order LMIs, which are more computationally efficient
— Trivializes proofs of LMIs feasibility for large NN,

and of feasibility for N implies N + 1



For L2-stability we use
2
V() = Volt) + e |

NN (1), Vo) = [Xo(D)%, + 3200y yy 220

where 0 < P € R@No+1)x(2No+1) '\, 5 oo leading to the reduced-order LMI:

ol PoLo 0
£ =201 —g—0) el Lol <o
allel?, ’
* * - AN+

®g = PyFy + F§ Py +26P) + 22 K8 Ko.

— The LMI dimension does not grow with N



Stability analysis

For L2-stability we use
2
V() = Vo(t) + pe [V Mo ()|, Vo(t) = [Xo(®)[3, + 1% g 220

where 0 < P € R@No+1)X(2No+1) '\, o6 leading to the reduced-order LMI:

q>0 P(]ﬁg 0
* —2(AN41 —q—8) ey’ 1 <0
allelld ’
* * T ANT1

b9 = PyFo + FOTPO +20Py + %K(?Ko

— The LMI dimension does not grow with N

Since we don't use dynamic extension, we can treat
general time-varying delays & sampled-data control via a ZOH

In the numerical example we easily verify LMIs for N = 30, whereas feasibility of the
full-order LMIs could be verified for N < 9.

To enlarge delays, in [Katz & EF, Aut under review| we compensate constant part of the
input delay via classical predictor.



Sampled-data implementation via dynamic extension

In [Katz & EF, Aut '21], we consider:

zt(x,t) = 2o (2, t) + az(z,t), t >0,
Za:(07 t) =0, Z(lvt) = U(t)
Sampled-data in measurements:
Sampling instances 0 = sp < 81 < -+ < $ < ..., limg 00 S = 00

Sk4+1 — Sk < TM,y> Vk € Z4, TM,y > 0.

Quantizer ¢ : R - R
lglr] = 7| < A, forallreR

where A > 0 is the quantization error bound
Discrete-time in-domain point measurement:

y(t) = qlz(z«, si)], z« €10,1), t € [Sk, Sk41)-

Dynamic extension:
w(z,t) = z(x,t) — u(t)



Sampled-data implementation via dynamic extension

Sampled-data in actuation:

Controller holding times 0 = tg <t1 <--- <t; <..., limj s t; = 00

tit1 —t; < Tmu, Vi €EZy, Taw > 0.

u(t) is generated by a generalized hold device:

a(t) = qlv(t))l, t € [tj,tj+1), w(0) =0.

Generalized hold - given v(t;), the control signal is computed as:

u(t) = ulty) +qlv(t)](t —t;), t € [tj,tj41), 5=0,1,...

Generalized
hold

Observer + Controller



Sampled-data implementation via dynamic extension

Dynamic extension:
w(z,t) = z(z,t) — u(t)
leads to the equivalent ODE-PDE system
a(t) = qlo(t;)], tE [tjtir1),
wel@,1) = wee (2, 1) + aw(a, £) + au(t) — g [v(t;)],

with homogeneous boundary conditions and

y(t) = qw(zs, sk) +ulsk)], t € [sk,sk41)

(No + 1)-dimensional observer-based controller
a(t) =qv(ty)], tEtjtjv1),
v(ty) = —Kod™ (t;),

VO (£) = [u(t), w1 (t),. .., DN, ()]



Sampled-data implementation via dynamic extension

Reduced-order closed-loop system for ¢t > 0:

Xo(t) = FoXo(t) + LCYy(t) — BKo Yy (t) + Bou(t)
+LC1e= M1y eN=No () + LE(t — 7y) + Loy (1),
Wn(t) = (= + Q)wa(t) +bn [KaXo(t) + KoTu(t)]
—bpoy(t), n >N, t>0
Here
Ty(t) =t —sg, tEI[sp,sk+1)s Ty(t) < Ty,
Tu(t) =t—1t;, tE€[ttj+1), Tult) <TMu

and the quantization errors 0., 0, are treated as disturbances

max ([[oulla s loyllog) < A



Sampled-data implementation via dynamic extension

For H'-ISS analysis, we use a Wirtinger-based Lyapunov functional
- efficient for sampled-data control

Challenge:
V' (t) may have jump discontinuities at s, k € Z4 and inside the intervals [sg, sk4+1),
where we want to apply Halanay's inequality.

\V(t), ast<b

a=ty 4 =4 t3 t=& ts b=tg

Figure 2: Possible behavior of V()



Sampled-data implementation via dynamic extension

Proposition (ISS Halanay's inequality)

LetV : [a,b) — [0,00) be a bounded function, where b— a < h for some h > 0. Assume that V (t)
is continuous on [ti,ti41), 1 =0,...,N —1, wherea =:tg < t1 < -+ <ty_1 <ty :=b and

lim V(t) > V(t), i=1,2,...,N—1.
t Nt

Assume further that for some d > 0 and 6o > 61 > 0
DTV (t) < =280V (t) + 261 sup,<p<, V(0) + d, t € [a,b)
where D1V (t) is the right upper Dini derivative. Then
V() < emPrt-aV(a) +d e 2(=)ds, t € [a,b)

where § = 8o — 61 and 8 > 0 is the unique solution of the equation 6 = 8o — §1e207M.

Reduced-order LMIs for ISS
lw( D)l + [0 )l +u?(t) < Moe™ 207t [lw(-, 0)[| 31 + M1 A2

The LMlIs are always feasible for large enough N and small enough samplings

The LMIs feasibility for N implies feasibility for N + 1.



Sampled-data implementation - Example

Consider
z¢(x,t) = 2z (x,t) + 32(x,t), t >0,
Zx(ovt) :u(t)7 Z(lvt) =0

with y(t) = q[2(0,sk)], t € [Sk,Sk+1). The open-loop is unstable.

Let § = 102, resulting in Ng = 1. The corresponding observer and controller gains are
Lo =1.0837, Ko =[12.6755,—12.7348].
The LMIs were found to be feasible for N = 2 with 75, = 0.05 and 7a7,,, = 0.09.



Sampled-data implementation - Example

Given
z0(z) = 3(x —x2)2, =z €[0,1].
the closed-loop system was simulated with varying sampling intervals
Spt1 = sk +0.5(1 +Up)Tr,y, Uk ~ Unif(0,1) random,
tjit1 =t; +0.5(1 +Uj)Tvru, U ~Unif(0,1) random

and A € {0.01,0.05} - quantization error bound.

[u(t)| + |lw(-,t)|| ;1 Vs Time - Neumann

05 T L !
Eo04f ]
< 03fh ]
3 Y
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In [Katz & Fridman, L-CSS '21] we consider
zt(xvt) = Zz¢¢(x7t) + qz(a:,t), z € [07 1]7 t> 07
22(0,8) =0, zz(1,t) =u(t—r)

with known delay r and
y(t) = {c,z(-, 1)), t >0, ce L*0,1)

Challenge:

Observer-based I2-stabilization for arbitrarily large delay r
via efficient reduced-order LMls.



To compensate r we employ a chain of M sub-predictors

2Ot — 7)o 21O (t—%r) b 200 (= L) e 2N (t)

Here EAN/IO (t) predicts the value of 2o (t + £7).



Predictor/Subpredictors via reduced-order LMls

To compensate r we employ a chain of M sub-predictors

Ot —r) e 20 (t— ML) s 200 (— 1) e 2N (1)

Here 21\]\/7[" (t) predicts the value of z™Vo (¢ 4 7))
Intuition: éiv" () ~ 2No(t+7) = u(t —7) =~ —KozVo(t).
Novelty:

Closed-loop system includes the state 2™V (t) (not N0 (t)),
subpredictor estimation errors X (t) and tail z,(t),n > N
= eliminates r from ODEs of 2V0(t) and z,,(t), n > N
and decreases it to 17 in Xe(t).

L2-stability in terms of reduced-order LMls

LMIs feasibility for arbitrary constant delays provided M and N are large.



Predictor/Subpredictors via reduced-order LMls

We also consider compensation of r using a classical predictor:
5(t) = eAorzNo(t) + [ eA0(=9) Bou(s)ds, u(t) = —KoZ(t)
The resulting reduced-order closed-loop system consists of ODEs for

Z(t), eNo(t) and z,(t), n > N.

Lyapunov L2-stability analysis leads to reduced-order LMI.
Given any r > 0, the LMI is feasible provided N is large enough.

For both sub-predictors and predictors, we prove
LMlIs feasibility for arbitrary constant delays provided observer dimension is large.
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Semilinear PDEs

[Karafyllis, 1JC '21] - design of CLF for global boundary L?-stabilization of semilinear 1D
heat eq with linear growth bound

In [Katz & EF, under review] - global distributed and boundary stabilization of a semilinear
heat equation with unknown/known semilinearity exhibiting linear growth bound

In [Katz & EF, L-CSS '22] we consider regional stabilization of

:é(z ),

0, Zzz(L t) =

zt(x,t) = —2zgaas (T, t) — Vzez(x,t) —
2(0,t) =0, z(1,t) =u(t), 222(0,1)



Semilinear PDEs

[Karafyllis, 1JC '21] - design of CLF for global boundary L?-stabilization of semilinear 1D
heat eq with linear growth bound

In [Katz & EF, under review]

- global distributed and boundary stabilization of a semilinear

heat equation with unknown/known semilinearity exhibiting linear growth bound

In [Katz & EF, L-CSS '22] we consider regional stabilization of

zt(x,t) = —2zgaas (T, t) — Vzez(x,t) —
2(1,t) = u(t), 222(0,1)

z(0,t) =0,

Dynamic extension:

leads to

:é(z ),

0, Zzz(L t) =

w(z,t) = z(z,t) — r(z)u(t), r(z)==

u(t) = —ku(t) + v(t), u(0) =0, K >0

wt(x,t) = *wzzzz(xyt) — VWzx (zv t) + ﬁr(m)u(t)
—r(z)v(t) — [w(z,t) + zu(t)] [we(z,t) + u(t)],

w(0,t) = w(1,t) = wzz(0,t) = waa(1,t) = 0.



° wn t)pn(x)

n=1

wn(t) = (A2 +vAn) wa(t) + Kbnu(t) — buo(t)
—w(t) —wP (1), t >0,

w () = ([w(-,t) + u(t)] we (-, 1), én),

w (1) = (w(-,t) + u(t), dn) u(t)

Modal decomposition: w(z,t) =

Controller:
o(t) = —Kw™ (1), w (1) = col {u(t), wa (D}, .

Closed-loop system for t > 0:
WM (t) = (A — BK)wN (t)—w™ M) (1) — w3 (1),
wn(t) = (=22 +vAn) wa(t) + Kbau(t) — bao(t)
—w () —wi? (1),



Semilinear PDEs

For H!-stability analysis of the closed-loop system, we consider

V(t):‘wN(t)‘i-i- Z Anwi (1),

n=N+1

where 0 < P € RIN+1)X(N+1),

To manage with semilinearity, let 0 < ¢ € R and assume
lwa (- )II +u3(t) < 0%, € [0,00).

We use the Young/Sobolev inequalities and Parseval's equality in the cross terms
and derive LMIs depending on tuning parameter o.

From LMlIs we find K, & and radius p of attractive ball ||z, (-,0)||* < p2,
starting from which the solutions are exp decaying

lw(, Ol F +u?(t) < Me™ Jw(-,0)[|31, £ >0



Conclusions

A dream about efficient finite-dimensional observer-based control comes true:

a LMI-based method is introduced for parabolic PDEs via modal decomposition.

—

—

i

Observer dimension, ISS & L?-gain, delay bounds are found from LMls.

LMiIs are proved to be asymptotically feasible and
they are almost not conservative in examples.

LMIs may be verified by users without any background in PDEs!
Large input delays are compensated by predictors.

For point measurement and actuation via dynamic extension,
sampled-data implementation employs generalized hold
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A dream about efficient finite-dimensional observer-based control comes true:

a LMI-based method is introduced for parabolic PDEs via modal decomposition.

—

—

i

Observer dimension, ISS & L?-gain, delay bounds are found from LMls.

LMiIs are proved to be asymptotically feasible and
they are almost not conservative in examples.

LMIs may be verified by users without any background in PDEs!
Large input delays are compensated by predictors.

For point measurement and actuation via dynamic extension,
sampled-data implementation employs generalized hold

Current work:

—

—

Modal decomposition for semilinear parabolic PDEs

Delay compensation for semilinear heat



Conclusions

A dream about efficient finite-dimensional observer-based control comes true:

a LMI-based method is introduced for parabolic PDEs via modal decomposition.

— Observer dimension, ISS & LZ2-gain, delay bounds are found from LMls.

— LMiIls are proved to be asymptotically feasible and
they are almost not conservative in examples.

— LMlIs may be verified by users without any background in PDEs!

i

Large input delays are compensated by predictors.

— For point measurement and actuation via dynamic extension,
sampled-data implementation employs generalized hold

Current work:
— Modal decomposition for semilinear parabolic PDEs

— Delay compensation for semilinear heat

Thank You!
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