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Dedicated to the memory of my friend and mentor

Slava Kurylev (1952-2019)

Slava was a leading figure in the
field of inverse problems.

His enormous enthusiasm, vision
and speed of mind lead him
develop various ambitious
programs (Inverse Problems in
Relativity, Geometric Whitney
theory)

With the spanish group, we were
investigating the interplay
between

homogenization,inverse problems
and geometry




Menu.

@ 1st Course. Calderon Problem

o Intro and Forward Map.

e Counterexamples. Homogenization.

o If and only if condition for stability.

o Quasiconformal maps.
@ 2nd Course. Scattering.

o Buckgheim approach.

e Connection with id;u = ou

o Taking averages improves the convergence.
@ Dessert.

e Homogenization in paralelizable manifolds.
e 2-scale convergence.
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Uniformly strongly elliptic boundary value problems

Let K = 1, Q < C bounded domain. We say v € G(K, Q) when
o Compactly supported: supp(y — 1) < Q.

’yilHoo < K.

@ Isotropic conductivity: 7: C — R.

e Strongly elliptic: [|v], < K,

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

V- (vVu) =0,
Uoa = fe Hl/z(aQ)

DtN map: Ay f = (vO,uy f)loq.

By integration by part we arrive to the weak formulation

o)) = /Q {0V, Vi A dy
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Calderén’s problem

The “forward map”
A G(K,Q) - (Hl/z(aQ), H—1/2(a9)) :
Y = A'yv

is continuous for the distance |71 — 72| .. Given boundary measurements
can we recover the conductivity? That is, find the inverse map

Al (H1/2(a§z), H—1/2(aQ)) - 4(K,Q),
A, — y.



Calderén meets QC maps and Non linear Fourier Transform
[e]e] o]

Difficulties

A problem is well-posed if the following conditions hold:
Qo (if we have perfect, complete data),

@ The solution is unique (planar case, see [Astala, Paivdrinta Annnlas
'06]), higher-D world record Caro Rogers Lpschitz conductivities (Pi
2018)

© The solution depends continuously on the input (a priori conditions
needed).

Unfortunately Calderdn's CIP is severely “ill-posed”. We will see that in
general there is no hope for stability
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Forward map for compactly supported

There is LP continuity of the forward map for “compactly supported”
conductivities:

Let {v;}7 G(K, Q) with ~j — Yo in LP, Qcc Q.

Take up, uj solution to Dirichlet BVP's with data ¢. Let % +
P big enough

KAy = Asy)ps )] = ’/Q(% —j)Vug - Vu;
< v =0l 51 Vol o) VUil 2

2
< i =0l sl

We have continuity of the forward map.
Tools The compact support was important higher integrability
[Meyers'63]-[Astala’'00].
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3 Mechanisms for inestability

o Counterexample to Stability in L® can be produced by of
coefficients. Lack of regularity (Alessandrini)
Solution: Measure stability in different norm.

@ Compactness of the set of D-N maps. Mandache 2001. largely
improved by Koch-Rulland-Salo 2020. The set of Dirichlet to
Neuman is rather compact (quantified in terms of the entropy). The
set of conductivities is rather sparse. Qualitatively: The set Y of
conductivities has to be compact. Quantitatively: Logarithmic
modulus of continuity.

@ Oscillating sequences.
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Stability counterexamples

Take a constant conductivity in C.

Add the characteristic of 1/4D), i.e.

Y =1+ X1/ap-

Translate it € to define 7. := 1 + X.11/4p-
Clearly [[vo — el ,, = 1.

But [0 — e[ — O.

Thus, A. — Ag, and L® stability fails.

But take vj € G(2,D) defined by

’Vj(z) =1+ %XQ(Z)Xchessboard(jz)-

The DtN maps converge as well [Alessandrini,
Cabib], [Faraco, Kurylev, Ruiz].

But {v;} has no LP-convergent partialll LP
stability fails in general! Thus, we seek a priori
conditions.
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Homogenization enters the game

Folklore: Counterexamples, one needs to look at rapidly oscillating
sequences of conductivities.

A ( The?) mechanism to have a grip on rapidly oscillating PDEs is the
theory of homogenization. Homogenization can be described in several
ways, G-convergence (H-converge), correctors, multiscale convergence.
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If 0, G-converges to o then N,, — N\, weakly.

The proof follows from the weak formulation,

o)) = /Q {0V ug, V)dx A dy

and G convergence impying convergence of energies.

Therefore to have a richer sets of counterexamples we need to
understand the following question.

Suppose that we have G-convergent sequence. When can we update the
weak convergence to operator norm convergence?
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F-Kurylev-Ruiz

Let Q c RY be a domain. Assume that

lim 61 <Iim sup [lon, — aLoo(Q5)) =40 (1)
n—0o0

—0

and that o, € Mk converges to o in the sense of the G—convergence.
Then

Jim |As, = Aol Hia)—H-112(20) = O-

(1), is a weak version of
lim (1V,(0 — 0)ie(omy + 0w~ olieem) =0 (2)

Which is implied by

nILmOO 1N, = Aol Hon)—H-12(20) = 0.



Counterexamples. Homogenization
0®@000000000000

e Valid for arbitrary domains (No Lipchitz or even limitations on the
dimension of the boundary)

@ No regularity assumptions on the cofficients.

@ General operators. Magnetic Laplacian, first order resolvent
estimates. We call them [/

o Ellipticity is only needed near the boundary. Therefor the result has
applications to imp obtaining isotropic almost cloackers
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The proof in the case of Alessandrini and Cabib is related to decay of
spherical harmonics in the unit ball. Under various assumptions the proof
can be extended for some domains.
Here we argue in a complete different manner. More general, less
quantitative.
Two main ideas:
@ Cacciopoli inequality can be interpreted as improved regularity.
Improved regularity means compactness.
o Ny —AN=ToA, =A% oT™* where the sequence A, converges
strongly and 7 is compact. Thus by the finite range approximation
of compact operators strong convergence follows.
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Lemma

Let w e HY(Q\Q') be a weak solution of
L*w = f + divF on Q\Q, (3)

for f € L2(Q) and F being a vector field in L>(Q\Q'). Then, for any Q",
Q' €, Q" €Q, there exists a C = C(Q, 2, Q", K, \) such that

/ |Vw|2<c(/ wit+ [ AP [ |f2>. (@
Q\Q” Q\Q/ Q\Q/ Q\Q/

Moreover if we choose Q) = Qo5 and Q" = Qs the estimate is

/ |Vw|? < C(6‘2/ |w|2+/ |F|2+/ |f|2>. (5)
Qs Qa5 929 92%)
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Abstract Compactness arguments

Theorem (Mandache'01)
NG (K, D)) is a pre-compact subset of L(H?(0D), H~/2(oD)).

Let F cc Q(K,ﬁ) in the LP distance, with QccQ. Then, Fis
LP-stable for Q.

Abstract argument, But no control on its modulus of continuity.

Let K>1, let p <1 and let F = G(K, roD). The family F is L?-stable
for D if and only if it is pre-compact.
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Alessandrini conjecture

Let 7,f(x) = f(x — y). Integral modulus of continuity of f:

wpf(t) := sup |f —7,f|,, for 0 < t < oo,
lyl<t

Theorem (Kolmogorov-Riesz)

F < G(K,Q) is LP-precompact if and only if it has a uniform p-integral
modulus of continuity w,f < wr: F < G(K,Q, p,wr).

Conjecture: Quantify continuity of inverse mapping for any w.
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Solution to Alessandrini conjecture

Theorem (F-Prats)

Let K> 1, let 0 < p < o0, let Q be a bounded domain and let w be a
modulus of continuity. Then the family G(K,Q, p,w) is L?-stable for Q.
In particular

1
s

1
= 2ll2s < € ot (1As = Aoy )

e for every 0 < s < o0. Moreover, if w is continuous,

pr
CK 1 CK
n(p) <kp (ld+w) | Ckpw | ——— I S
S 7\ Jlog(p)| % [og(p)]
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@ Thus there is stability for every bounded domain and every modulus
of continuity.

@ No “compactly supported” condition!! Every conductivity has an
integral modulus of continuity.

@ This is a final step of a long program developed in collaboration with
A.Ruiz. Based Various papers, Barcelo, Barceld, Clop, Ruiz and
Rogers.

e With Barcelé and Ruiz we dealt with L* stability for Holder

coefficients. Improved to Dini continuous by MacOwen and Veteel
(2020).
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CGO Solutions. Non Linear Fourier transform

The CGOS move boundary conditions to infinity: family
of solutions parameterized by k € C, which behave
asymptotically as e?:

V- (yVu,(, k) =0,
u,(z, k) = e (1+ R(z, k), with R(-, k) € WLP

Interesting behavior in k: for every z

Oruy(z, k)

—im = ct(k) =: 7(k).

(scattering transform), nonlinear Fourier Transform
Integral formula of the scattering transform and elliptic
estimates yield stability from D-N map to scattering
transform

(k) = (k)| < e“Hp
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Pseudoanalytic equations

Next we need to understand how the pseudoanalitic
equation (in the k variable) depends on .

Oguy(z, k) = —iT,(k)uy(z, k).

o If 7, decays ( depends on the regularity of y as the
classical Fourier transform) there is uniqueness and

stability. Classical PDE p = AN,
e In absence of decay, we get uniqueness and (bold)
stability by using both variables at the same time: log u, — izk = o(k)

lur = w2] p < e(IAL = A2l 2)- [AV ], < ulp)

1AY], < n(p)

This is a topological argument in both variables: Very
difficult.

e Then we use Cacciopoli typer arguments in terms of the
modulus of continuity and interpolation to estimate

|[Vuy — V3l||;2. From that, suitable pointwise estimates
allow to estimate |v1 — 72|
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Quasiconformal mappings (Barcelona team: Clop, Prats)

Conformal mappings
Preserves angles
“Circles to circles”
Cauchy-Riemann:

S (O«f +id,f) =0
of =0

Quasiconformal
mappings

Angle distortion
bounded.

“Circles to ellipses”.
|0f| < k|of]
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Hodge-* conjugation

Dictionary of divergence equation and Beltrami equation:
Let p:= };—j{ Let f, := Reu, + iImu,-1. Then

E‘fu = NE
fu(z, k) = e* (1 + M,), with M, (-, k) e WLP(C)
: . log(fu) - ; o
The logarithm ¢, := ==~ is a quasiconformal principal
mapping of C.
Its in\{erse Yk := @, (-, k)7 satisfies the linear Beltrami pi= AN,
equation

AT, (k)| < pec

Bl k) = () ekl k) Tl K

BUn() = — K0 vu) e k() 200
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Subexponential behavior in k

pi= 1O,

We show that ¢, (-, k) — Id||,.. < v(|k|™1).
Tools: IAM, (-, k)| yype
@ interaction of modulus of continuity with translation AT, (K)| < peClkl

invariant operators and Fourier transform )
log f,, — izk = o(k)

@ control of every term in the Neumann series respect 1

to k
@ Quantify how the composition with qc-maps affects
the modulus of continuity.
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Back to the conductivity

We see that log(uy) = log(fy,) fora A: C x C — D
depending on the point. We infer the same asymptotic
behavior

|log(u,)(z, k) — izk| < [K[v([k|™H).

This is enough decay to use topological arguments

pi= AN,

HAMM(k)HW]_,c
AT (k)| < pel
log f,, — izk = o(k)

log uy, — izk = o(k)
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Inverse scattering at a fixed energy k?

e For all # € S we send plane waves e*?* toward an unknown object.

e For all ¥ € S?~1 we measure the scattered waves.

e If we consider e’*®* to be a sound wave (in air or in water for
example), the task is to recover the speed of sound c(x) at each x.

o If we consider e*?* to be the wavefunction of a beam of neutrons fired
at a nucleus, the task is to recover the nuclear potential V/(x) at each x.
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The PDEs

The plane waves satisfy the Helmholtz equation

—Au = Kk%u
and so we expect our scattered waves to satisfy distorted versions of this.

Sonar: The scattered waves are supposed to satisfy the accoustic
equation
2
—Au = %u.

We normalise so that the speed of sound is 1 away from the object.

Nuclear: The scattered waves are supposed to satisfy the time
independent Schrodinger equation

—Au = Ku— Vu.

e Writing V = k*(1 — %), the models are equivalent.

e So from now on we consider only the quantum problem.
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So our scattered solutions are supposed to satisfy
(—A — K?)u = —Vu,
and we want the solution u = uy that looks most like e*?x.
e That is, up solves the Lippmann—Schwinger equation
g = e0x (—A — k3" [ Vug]

which can be written as

o (x) = €0 / Go(x — Y)V(y)us(y) d,

where in 2D i
oy elklx 1
Go(x —y) = e +o< )
AL Vx|
e Thus

. ik|x| 1
up(x) :e’kg'x—A(Q,ﬁ ° +o( )

)R

o The challence ic +hen +a recaver \/ fram A
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Reduction to the DN map

e Let usolve Au = (V — k?)u with u|sq = f. Then

Ay : f— YVu-n|sq, J

e The first step is to recover this map from the scattering amplitude A.
e First by Nachman's formula (1988),
Av —No=S,' =S,

Svlf]:= . G, Yf(y)dy,  (=A+V —k)Gy(x,y) =6(x—y).

e Then adapting the 3D work of Stefanov (1991), we obtain

Gy — Go = Formula(A).

e The challenge is then to recover V from Ay — Ag.
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Alessandrini’s identity

(A = o)leleal, vien) = [ vev. J

Proof :
As Au = Vu and Av = 0, by integration by parts,

/QVuv=/Auv
= Vu nv—/Vu Vv
_<AV /Vu Vv
:<Av[u],v>—/(mqu~n+/QuAv
_ </\V[u]7 v> - <u,/\0[v]>
= <(/\v — No)[u], V>
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Strategy: The strategy of complex geometric optic solutions (Faddeev
solutions) consists in chosing product uv = e/¢X(1 + r).

In 3D it works for bounded potencials (Sylvester-Uhlman Annals 1987).
Since for smooth conductivities it extends to conductivities in C*.
There are analogous Alessandrini identities for less regular coefficients
but the problem is to show that the remainder tends to zero.

The conductivity equation can be reduced to the Schrondinger at least
formally vz V = A3

The current world record is by Caro-Rogers (Pi 2016) which prove the
result for Lipschitz conductivites. (Haberman-Tataru C!, Haberman
better results for n = 3,4)
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[1] Prove that only one potential V' can give rise to a given Ay — Ag.

o Bukhgeim (2008), Vel
e Blasten smanuvilov—Yamamoto (2015), VelP, p>2
[2] Give a formula which gives V in terms of Ay — Ag.

e Bukhgeim (2008) + Novikov-Santacesaria (2011), Vect
e Astala—F—Rogers. , Ve HY?
[3] Give an algorithm which can compute V given Ay — Ao.

e Tejero thesis
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Bukhgeim'’s solutions to Laplace’s equation

e Quadratic phases!

Unx(2) = 3((2 = )2 = (22 = ) + 2(21 = x0)(22 = %)) J

o Identifying (z1,22) with z1 + iz, we have 1, 4(2) = 8(z — x)*.

Thus e’ and e/¥»x are holomorphic and antiholomorphic, respectively.

e Writing
A = (0z +100,)(0z — i0z),

we see that e’¥nx e¥nx are solutions to Av = 0.

e The solutions grow exponentially at infinity, but |e"¢"'xe@w| =1
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Bukhgeim'’s heuristic

Suppose that the potential V is smooth and that /¥~ were a solution to

Au = Vu.
Then by Alessandrini's identity,

V e”'¢'n,x e@,,,x

<(/\v — No)[e™], e@"’x> =

— 5

V(z)e'd (@—xy~(z=x)?) 4.

Thus by the method of stationary phase,

i Av — No)[e¥nr], e¥nxy = [ V(z E ei%((z‘_xl)z_(zz_XZ)Z)dz
2 (v = Ao)[er], (2)
s

VvV
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Making the heuristic precise

As before, but with e¥nx replaced by u = e/¥nx + e/¥nxw,

n T n =
—{ (Ay — No)[u ,e’w"»X> = — [ Vue¥nx
47r<( v =falle] ar Jq
= / \/iei%,xe@n,x _|_ / V Wieiwn,xeian,x.
4 47
We expect
n . —
/ er’w"vxe’w"«x — V(x) as n— o, (conv)
T
so we also need to prove
n - .
/ Vw 4—6”“* e'Vnx —»0 as n— . (remainder)
T

Remainder is dealt with via Van der Corput Lemma and Cauchy transform
estimates. By now it is well understood, so we focuse on the main term.
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Main term: Carlesson meets Calderdn

Writing K, (y) = 2 e'#0i=¥) it remains to prove

V s+ K,(x) > V(x) as n— oo. (conv)J
As VK, = (\7!?,7) ", we see that

Vi Ky = (\7(5) e—f%@%—@)v —. ety
which, at time t = 1/n, solves
i0tu+ou=0, u(-,0)=V,
where 0 = Oy — Oxpx -

Thus (conv) can be interpreted as the convergence of the solution to a
time dependent equation to its initial data as time tends to zero.

Theorem (Astala-F-Rogers 16)
If V e H'/2 then (conv) holds for all x € Q\E with dimy(E) < 3/2.
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What happens below H*®

Inspired by Carlesson problem. First explicit example that can not be
recovered.

V(x) = Vi0x) = D 207 cos(2x) (2 x1)d(xe)
Jj=2 Jj=>2

Jorgue Tejero thesis was devoted to understand this issue. Three
messages.

elf the potencials are piecewise smooth. The algoritm still converges.

e Buckgheim algorithm is very suitable for taking various averages, which
gives recovery in H*.

e The average algorithms seem to have better convergence properties.
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Piecewise smooth reconstruction

Theorem
Let q be a piecewise-W?1 complex-valued potential, then

lim é/ /N (Ag —No) [unx] = q(x), a.e xel.
o9

A—o0 T

Moreover, if q is piecewise-W1 with 2 < s < 3 then

A NS _s
400 =2 [ % 0 = o) und| < G (el + gl )
™ JoQ

for almost every x € Q.

> ||| ps.r is a suitable norm for piecewise- WS potentials.
D
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By, (x) = 2 (Av — Ao)[u], e%x> When the Buckheim algorithm does
not work we can take suitable averages.

Theorem (Tejero)

Let s > 0, let g € H*(R?) be a complex-valued potential supported in a
bounded Lipschitz domain Q c R? and let o = A='/*. Then

lim @, = Bl\(x) = g(x) a.e. x€ Q.
A—00
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m

Performance (on the main term) |

Taking suitale averages
Improve the pictures

i

Different examples-
No simetries.
Still averaging does
much better
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Back to Slava and Homogenization

Question: How to obtain explicit formula for the homogenization in
arbitrary manifolds?

e Parallelizable manifold.

Set (M, g) a Riemanian manifold. We say that is is parallelizable if there
exist global smooth vector fields ['(p) = (X1, X2, X,).

eThe thorus bundle. TM = ™

(p,v1) ~ (g,v2) <= p = qandvi — v = > ki X;

e M = uD;, D; eVoronoi domain with center p; and approximately e.

e The partition of unity 1; related to D;.

vol{ Vo # 0} < C'eP=D% vol(uisupp V) < C"e* P,
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It is not so easy how to speak of explicitly oscillating sequences in an
arbitrary manifolds. A natural way, is to start with periodic functions in
the tangent bundle and bring them back to the manifold via the
exponential map. Given f € C*(TM)) for every .

x —1
We define Hy, (q) = w
Then,

Ofe Z¢J Pj,ppji Zdjj ij

An analogous definition can be stated for k, m tensors. Particularly if we
start with 2 tensors.

= > (g HE
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The homogenized problem We define A* € T%2(M) by stating that for
any e, e € T(M)

A*(p)[eia ej] = / A(p7 V)[dvWi(p7 V) + €, dij(p7 V) + ej]dv

P

Here w;(p, v) is the I'(p) periodic solution to the cell problem
_dIVv(A(pv V)[vai(pv V) + ei]) =0

Our main theorem is the following homogenization result.

Theorem (Guijarro-F-Kurylev-Ruiz)

Given f € H71(M) the unique solution u. € H}(Q) of the problem
div(A[duc]) = f
converge weakly to u* € H} () the unique solution to

div(A*[du™]) = f
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e. Main tool. Studying two scale convergence on manifolds
e Natural definitions for functions. A sequence u€ two scale converges to
u € L2(M) two scale converges to u € L2(T(M))

/ feu. — f(p,v)u
M ™

e Various extension for forms or vector fields in TM but it gets technical
to deal with the horizontal and vertical parts of the vector field.

Let X€ a suitably defined oscillating vector field and h = div, (X).

The most difficult part is the following lemma.

Theorem 9.2. Let u € H'(M). Then, as e — 0,

1 -
‘—/ (du, X€) dq — —/ u-hdq— / u - div X dq
M €JMm M

Moreover, this convergence is uniform when u lies in a bounded set in

HY(M).

— 0, (9.3)

e Potential pplications. E.g Darcy law, theories 3D to 2D in elasticity.
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The end

Muchas Gracias!!
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