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FSI problems

Fluid structure problems are coupling systems that involve generally a
fluid and rigid or deformable structures.

Figure — Fluid-solid interaction problem



The system writes :

7= Az+ Bv + F(z),
a'(t) = Cz(t),
z(0) = 2°,

a(0) = a°.

@ z stands for the velocity of the fluid and the structure velocities and
a stands for the position of the rigid body.

@ v is the control.

Objectives : Find a distributed control v such that : z(T) =0 and
a(T)=ar.
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Specificities of this work

@ FSI problems : free boundary problem.
@ Navier boundary conditions.
@ Non linear problem.

@ Coupled system.



Boundary conditions

The non-slip (or Dirichlet) boundary conditions :
Ur = vs on 0N2.
The slip (or Navier) boundary conditions :

(Us—=vs)n =0 o0n 09, (Impermeability condition)
[T(Us, Pr)n+ B(Ur — vs)]. =0 on 9, (Slip condition)

@ T(Ur, Pr)n : The force exerted by the fluid on the surface.
@ (3 : The friction coefficient.

In the FSI problems, the vector Ur designates the fluid velocity and the
vector v stands for the structure velocity.



Boundary conditions

Dirichlet boundary conditions




The influence of the boundary conditions

Rigid structure

@ M. Hillairet, D. Gérard-Varet, C. Wang. 2014 :

e Dirichlet boundary conditions : No contact at x = 0.
e Navier boundary conditions : Collision can occur at
x = 0.



Previous works with Navier boundary conditions

Existence results :
@ Existence of weak solutions : D. Gérard-Varet, M. Hillairet. 2014

@ Uniqueness of the weak solution : N V. Chemetov, S. Necasova, B.
Muha. 2017.

@ Existence and uniqueness of strong solution : C. Wang. 2014



Problem setting
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@ F(t) : the fluid domain.
@ 5(t) : the rigid body.

® Q=F(t)US(t).
OF(t) = aS(t) U aQ



Fluid equations

The incompressible Navier-Stokes system
U+ (U-VIU-V-T(U,P)=vlp, in(0,T)x F(t),
V-U=0, in(0,T)x F(t),

@ F(t) C R? : Fluid domain that depends on time.
@ U(t,x) € R?: The fluid velocity.
@ P(t,x) : The fluid pressure.

The non linear term :
3
ou

The Cauchy stress tensor
T(U, P) = —Plk +2vD(U),

v : The viscosity of the fluid.

1 /0U; 0U;
oWl =3 (50 + 52)-




Structure equations

The structure position :
Xs(t,y) = h(t) + Reryy, y€S.

h(t) : The solid position of the solid.
6 . The rotation of the solid.
The structure velocity

Us(t,x) = h'(t) +w(t)(x — h(t))", x € aS(t),

w(t) : The angular velocity of the solid.
Newton'’s laws :

mh"(t) = = [5500 T(U,P)n dT £ € (0, T),
= Jos((x = h(t )L T(U P)n dr t€(0,T).

m > 0 is the mass of the rigid structure and J > 0 its moment of inertia



Navier boundary conditions

On the fixed boundary part 9%, the boundary conditions write

U,=0 on(0,T)x099Q,,
RvD(U)n+ U], =0 on (0, T) x 09,



Navier boundary conditions

On the fixed boundary part 9%, the boundary conditions write

U,=0 on(0,T)x099Q,,
RvD(U)n+ U], =0 on (0, T) x 09,

On the moving boundary 95(t), the boundary conditions write

n (0, T) x 8S(t),

(U~ Us),
I n (0, T) x 0S(t).

{ [2vD(U)n + Bs (U — Us)

0
0

where g and Bs are the friction coefficients.



Navier boundary conditions

On the fixed boundary part 9%, the boundary conditions write

U,=0 on(0,T)x099Q,,
RvD(U)n+ U], =0 on (0, T) x 09,

On the moving boundary 95(t), the boundary conditions write

n (0, T) x 8S(t),

(U~ Us),
I n (0, T) x 0S(t).

{ [2vD(U)n + Bs (U — Us)

0
0

where g and Bs are the friction coefficients.
Initial conditions

U(0,x) = u°(x), x € F(0), h(0)=~h°, H(0)=h', w(0)=u",



Problem setting

U,=0 te€(0,T), xedQ,

RvD(U)n+ U], =0 te(0,T), x €09,
(U=Us)h=0 te(0,T), xc0S5(t)
RvD(U)n+ Bs(U—Us)]. =0 te(0,T), xe€dS(t),



Problem setting

Objective : Find a control v such that the velocities are equal to zero at
final time T.
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Main result

Theorem

Assume that s > 0. There exists v € L2(0, T; [L2(O)]3) such that

U(T,)=0inF(T), h(T)=0, H(T)=0

w(T)=0, O(T)=0,

provided that the velocities are small enough and the final state is close
enough to the initial state.

Note : If h(T) = ht and 8(T) = 61, we can reduce the problem to
h(T) =0, §(T) = 0.



Previous null controllability results

Dirichlet boundary conditions :
@ O. Imanuvilov, T. Takahashi. 2007.
@ M. Boulakia and A. Osses. 2007.
@ M. Boulakia and S. Guerrero. 2011.



e Change of variable

9 Linearized system

e Fixed-point
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Change of variables

T.Takahashi. 2003.
@ Change of variables : X(t,-) : Q — Q such that

X(tv ) = XS(tv ) :S= S(T) — S(t)
Y(t,)=X"(t,")
U(t, ) = VY(t,X(L -))U(f,X(t, ))a ,D(t, ) = P(t,X(t, ))



Change of variables

C. Wang. 2014.
Fluid equations :

u(t,y) = (VY)(t, X(t,y))U(t, X(t,y)), ply,t) = P(t,X(t,y)),

Oru—V -T(u,p) =vlp+ F(u,p) t€(0,T), y€eF,
V.u=0 te(0,T), yeF,

Structure equations

us = H(t) +w(t)yt, yeds,

{ mh"(t) = — [,s T(u,p)n dl te (0, T
Ju'(t) == [osy— - T(u,p)ndl t€(0,T),

Boundary conditions

u,=0 te(0,T), yedQ,

RvD(u)n+ Bau], =0 te(0,T), y€0Q,
(u—us),=0 te(0,T), yecds,
RvD(u)n+Bs(u—us)], =0 te(0,T), y€dS.
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Linearized system

{atuV~’]T(u,p)—f+Vlo €(0,T), yeF,
0, T

V-u=0 te€(0,T), yeF.
mh" (t *_fas (u,p)ndl te€(0,T),
Ju'(t) **fasy -T(u,p)n dl t€ (0, 7).

us = h'(t) +w(t)y:, yeas.

Boundary conditions

u,=0 te(0,T), yedQ,

RvD(u)n+ Bau], =0 te(0,T), y €0,
(u—us),=0 te(0,T), yecds,

RvD(u)n+ Bs(u—us)], =0 te(0,T), y€dS.

U(O,y) = UO(y)’ yEF, h(O) = h07 h/(O) = hla w(O) = wO’



Linearized system

The linearized system writes :
u =Au-+ Bv+F,
a'(t) = Cu(t),
u(0) = u°,
a(0) = a°.
A is introduced in C. Wang. 2014,

a=(h0), Cu=(H, w).

Theorem (Null controllability of the linearized system)

For all F, u°, a° there exists a control v € L2(0, T;[L?(O)]?) such that
u(T)=0and a(T) =0.




Main steps of the proof

We use the theory of O. Imanuvilov, T. Takahashi. 2007.

@ Main ingredient : Carleman estimate for the adjoint system of the
linearized problem.

@ Difficulties :

o Control the velocity of the rigid body with the fluid
velocity :

||u$ . n”L2(8S) < C HUHLZ(}') ’

s llus - lzgos) < C( ulliagor + lullzr

IV % 0o )
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Oru—V -T(u,p) = vip + F(u,p) t€(0,T), y€F,
V-u=0 te(0,T), yeF,

us = h'(t) +w(t)y”, yeas,
mh" (t __fas (u,p)ndl te (0
Ju'(t) ——fasy T(u,p)n dl te€(0,T),

u, =0 te€(0,T), yeoQ,

RvD(u)n+ Bqu], =0 te(0,T), y €0,
(u—us)h=0 te€(0,T), ye€ds,

RvD(u)n+ Bs(u—us)], =0 te(0,T), y€dS.

There exists a function p € C([0, T]) such that the application

o:f — F(u,p)

defines a contraction on

f

K = {f € 12(0, T; [L2(F)P), H < R} and ®(K) C K

Pllzo, Ti[e2(F)2)



Conclusion and perspectives

@ Global controllability.

@ Reduce the controls.

Navier Stokes system : S.Guerrero and C.Montoyay. 2017

@ Deformable structure : Dirichlet boundary condition : J.Lequeurre
2013
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