Local null controllability of a fluid-rigid | body interaction problem with Navier slip boundary conditions

lmene Aïcha DJEBOUR

Institut Elie Cartan de Lorraine Inria team SPHINX

20 mai 2021

FSI problems

Fluid structure problems are coupling systems that involve generally a fluid and rigid or deformable structures.

Figure - Fluid-solid interaction problem

Objectives

The system writes:

$$\begin{cases} z' = Az + Bv + F(z), \\ a'(t) = Cz(t), \\ z(0) = z^{0}, \\ a(0) = a^{0}. \end{cases}$$

- z stands for the velocity of the fluid and the structure velocities and
 a stands for the position of the rigid body.
- v is the control.

Objectives: Find a distributed control v such that: z(T) = 0 and $a(T) = a_T$.

Specificities of this work

- FSI problems : free boundary problem.
- Navier boundary conditions.
- Non linear problem.
- Coupled system.

Boundary conditions

The non-slip (or Dirichlet) boundary conditions :

$$U_f = \mathbf{v_s}$$
 on $\partial \Omega$.

The slip (or Navier) boundary conditions :

```
 \begin{cases} (U_f - \mathbf{v_s})_n = 0 & \text{on } \partial \Omega, & \text{(Impermeability condition)} \\ [\mathbb{T}(U_f, P_f) \mathbf{n} + \beta (U_f - \mathbf{v_s})]_{\tau} = 0 & \text{on } \partial \Omega, & \text{(Slip condition)} \end{cases}
```

- $\mathbb{T}(U_f, P_f)n$: The force exerted by the fluid on the surface.
- \bullet β : The friction coefficient.

In the FSI problems, the vector U_f designates the fluid velocity and the vector v_s stands for the structure velocity.

Boundary conditions

Dirichlet boundary conditions

Navier boundary conditions

6

The influence of the boundary conditions

Rigid structure

- M. Hillairet, D. Gérard-Varet, C. Wang. 2014 :
 - Dirichlet boundary conditions : No contact at x = 0.
 - Navier boundary conditions : Collision can occur at x = 0.

Previous works with Navier boundary conditions

Existence results:

- Existence of weak solutions : D. Gérard-Varet, M. Hillairet. 2014
- Uniqueness of the weak solution: N V. Chemetov, Š. Nečasová, B. Muha. 2017.
- Existence and uniqueness of strong solution: C. Wang. 2014

Problem setting

- ullet $\mathcal{F}(t)$: the fluid domain.
- S(t): the rigid body.
- $\bullet \ \Omega = \mathcal{F}(t) \cup S(t).$

$$\partial \mathcal{F}(t) = \partial S(t) \cup \partial \Omega$$

9

Fluid equations

The incompressible Navier-Stokes system

$$\begin{cases} \partial_t U + (U \cdot \nabla)U - \nabla \cdot \mathbb{T}(U, P) = v \mathbf{1}_{\mathcal{O}}, & \text{in } (0, T) \times \mathcal{F}(t), \\ \nabla \cdot U = 0, & \text{in } (0, T) \times \mathcal{F}(t), \end{cases}$$

- $\mathcal{F}(t) \subset \mathbb{R}^3$: Fluid domain that depends on time.
- $U(t,x) \in \mathbb{R}^3$: The fluid velocity.
- P(t,x): The fluid pressure.

The non linear term :

$$(U \cdot \nabla)U = \sum_{i=1}^{3} U_{i} \frac{\partial U}{\partial x_{i}}.$$

The Cauchy stress tensor

$$\mathbb{T}(U,P) = -PI_2 + 2\nu D(U),$$

u: The viscosity of the fluid.

$$[D(U)]_{i,j} = \frac{1}{2} \left(\frac{\partial U_i}{\partial x_i} + \frac{\partial U_j}{\partial x_i} \right).$$

Structure equations

The structure position:

$$X_{\mathcal{S}}(t,y) = h(t) + R_{\theta(t)}y, \quad y \in \mathcal{S}.$$

h(t): The solid position of the solid.

 θ : The rotation of the solid.

The structure velocity

$$U_S(t,x) = h'(t) + \omega(t)(x - h(t))^{\perp}, \quad x \in \partial S(t),$$

 $\omega(t)$: The angular velocity of the solid.

Newton's laws:

$$\left\{ \begin{array}{c} mh''(t) = -\int_{\partial S(t)} \mathbb{T}(U,P) n \ d\Gamma & t \in (0,T), \\ J\omega'(t) = -\int_{\partial S(t)} (x-h(t))^{\perp} \cdot \mathbb{T}(U,P) n \ d\Gamma & t \in (0,T). \end{array} \right.$$

m > 0 is the mass of the rigid structure and J > 0 its moment of inertia

Navier boundary conditions

On the fixed boundary part $\partial\Omega$, the boundary conditions write

$$\left\{ \begin{array}{ll} U_n = 0 & \text{ on } (0,T) \times \partial \Omega,, \\ \left[2 \nu D(U) n + \beta_\Omega U \right]_\tau = 0 & \text{ on } (0,T) \times \partial \Omega, \end{array} \right.$$

Navier boundary conditions

On the fixed boundary part $\partial\Omega$, the boundary conditions write

$$\left\{ \begin{array}{ll} U_n = 0 & \text{ on } (0,T) \times \partial \Omega,, \\ \left[2 \nu D(U) n + \beta_\Omega U \right]_\tau = 0 & \text{ on } (0,T) \times \partial \Omega, \end{array} \right.$$

On the moving boundary $\partial S(t)$, the boundary conditions write

$$\left\{ \begin{array}{ll} (U - \textcolor{red}{U_S})_n = 0 & \text{ on } (0, T) \times \partial S(t), \\ [2\nu D(U)n + \beta_S (U - \textcolor{red}{U_S})]_{\tau} = 0 & \text{ on } (0, T) \times \partial S(t). \end{array} \right.$$

where β_{Ω} and β_{S} are the friction coefficients.

Navier boundary conditions

On the fixed boundary part $\partial\Omega$, the boundary conditions write

$$\left\{ \begin{array}{ll} U_n = 0 & \text{ on } (0,T) \times \partial \Omega,, \\ \left[2 \nu D(U) n + \beta_\Omega U \right]_\tau = 0 & \text{ on } (0,T) \times \partial \Omega, \end{array} \right.$$

On the moving boundary $\partial S(t)$, the boundary conditions write

$$\left\{ \begin{array}{ll} (U - \textcolor{red}{U_S})_n = 0 & \text{ on } (0, T) \times \partial S(t), \\ [2\nu D(U)n + \beta_S (U - \textcolor{red}{U_S})]_{\tau} = 0 & \text{ on } (0, T) \times \partial S(t). \end{array} \right.$$

where β_{Ω} and $\beta_{\mathcal{S}}$ are the friction coefficients.

Initial conditions

$$U(0,x) = u^{0}(x), x \in \mathcal{F}(0), \quad h(0) = h^{0}, \quad h'(0) = h^{1}, \quad \omega(0) = \omega^{0},$$

Problem setting

$$\begin{cases} \partial_t U + (U \cdot \nabla)U - \nabla \cdot \mathbb{T}(U, P) = v \mathbf{1}_{\mathcal{O}} & t \in (0, T), \ x \in \mathcal{F}(t), \\ \nabla \cdot U = 0 & t \in (0, T), \ x \in \mathcal{F}(t), \end{cases} \\ \begin{cases} mh''(t) = -\int_{\partial S(t)} \mathbb{T}(U, P) n \ d\Gamma & t \in (0, T), \\ J\omega'(t) = -\int_{\partial S(t)} (x - h(t))^{\perp} \cdot \mathbb{T}(U, P) n \ d\Gamma & t \in (0, T), \end{cases} \\ \begin{cases} U_n = 0 & t \in (0, T), \ x \in \partial \Omega, \\ [2\nu D(U)n + \beta_{\Omega}U]_{\tau} = 0 & t \in (0, T), \ x \in \partial S(t), \\ [2\nu D(U)n + \beta_{S}(U - U_{S})]_{\tau} = 0 & t \in (0, T), \ x \in \partial S(t), \end{cases} \end{cases}$$

$$U(0,x) = u^{0}(x), x \in \mathcal{F}(0), \quad h(0) = h^{0}, \quad h'(0) = h^{1}, \quad \omega(0) = \omega^{0},$$

Problem setting

Objective: Find a control v such that the velocities are equal to zero at final time T.

Main result

Theorem

Assume that $\beta_S > 0$. There exists $v \in L^2(0, T; [L^2(\mathcal{O})]^3)$ such that

$$U(T,.)=0$$
 in $\mathcal{F}(T), \quad h(T)=0, \quad h'(T)=0$
$$\omega(T)=0, \quad \theta(T)=0,$$

provided that the velocities are small enough and the final state is close enough to the initial state.

Note: If $h(T) = h_T$ and $\theta(T) = \theta_T$, we can reduce the problem to h(T) = 0, $\theta(T) = 0$.

Previous null controllability results

Dirichlet boundary conditions:

- O. Imanuvilov, T. Takahashi. 2007.
- M. Boulakia and A. Osses. 2007.
- M. Boulakia and S. Guerrero. 2011.

Outline

Change of variable

2 Linearized system

Fixed-point

Table of Contents

Change of variable

2 Linearized system

Fixed-point

Change of variables

T. Takahashi. 2003.

• Change of variables : $X(t,\cdot):\Omega\longrightarrow\Omega$ such that

$$X(t,\cdot) = X_{S}(t,\cdot) : S = S(T) \longrightarrow S(t)$$

$$Y(t,\cdot) = X^{-1}(t,\cdot)$$

$$u(t,\cdot) = \nabla Y(t,X(t,\cdot))U(t,X(t,\cdot)), \quad p(t,\cdot) = P(t,X(t,\cdot)).$$

Change of variables

C. Wang. 2014.

Fluid equations:

$$u(t,y) = (\nabla Y)(t,X(t,y))U(t,X(t,y)), \quad p(y,t) = P(t,X(t,y)),$$

$$\begin{cases} \partial_t u - \nabla \cdot \mathbb{T}(u,p) = v1_{\mathcal{O}} + F(u,p) & t \in (0,T), \ y \in \mathcal{F}, \\ \nabla \cdot u = 0 & t \in (0,T), \ y \in \mathcal{F}, \end{cases}$$

Structure equations

$$\begin{cases} mh''(t) = -\int_{\partial S} \mathbb{T}(u, p) n \ d\Gamma & t \in (0, T), \\ J\omega'(t) = -\int_{\partial S} y^{\perp} \cdot \mathbb{T}(u, p) n \ d\Gamma & t \in (0, T), \end{cases}$$

 $u_S = h'(t) + \omega(t) y^{\perp}, \quad y \in \partial S,$

Boundary conditions

$$\begin{cases} u_{n} = 0 & t \in (0, T), y \in \partial \Omega, \\ \left[2\nu D(u)n + \beta_{\Omega}u\right]_{\tau} = 0 & t \in (0, T), y \in \partial \Omega, \\ (u - u_{S})_{n} = 0 & t \in (0, T), y \in \partial S, \\ \left[2\nu D(u)n + \beta_{S}(u - u_{S})\right]_{\tau} = 0 & t \in (0, T), y \in \partial S. \end{cases}$$

Table of Contents

1 Change of variable

2 Linearized system

Fixed-point

Linearized system

$$\begin{cases} \partial_t u - \nabla \cdot \mathbb{T}(u, p) = f + v \mathbf{1}_{\mathcal{O}} & t \in (0, T), \ y \in \mathcal{F}, \\ \nabla \cdot u = 0 & t \in (0, T), \ y \in \mathcal{F}. \end{cases}$$

$$\begin{cases} mh''(t) = -\int_{\partial S} \mathbb{T}(u, p) n \ d\Gamma & t \in (0, T), \\ J\omega'(t) = -\int_{\partial S} y^{\perp} \cdot \mathbb{T}(u, p) n \ d\Gamma & t \in (0, T). \end{cases}$$

$$u_S = h'(t) + \omega(t) y^{\perp}, \quad y \in \partial S.$$

Boundary conditions

$$\begin{cases} u_{n} = 0 & t \in (0, T), \ y \in \partial \Omega, \\ \left[2\nu D(u)n + \beta_{\Omega}u\right]_{\tau} = 0 & t \in (0, T), \ y \in \partial \Omega, \\ (u - u_{S})_{n} = 0 & t \in (0, T), \ y \in \partial S, \\ \left[2\nu D(u)n + \beta_{S}(u - u_{S})\right]_{\tau} = 0 & t \in (0, T), \ y \in \partial S. \end{cases}$$

$$u(0, y) = u^{0}(y), \ y \in \mathcal{F}, \quad h(0) = h^{0}, \quad h'(0) = h^{1}, \quad \omega(0) = \omega^{0},$$

Linearized system

The linearized system writes:

$$\begin{cases} u' = Au + Bv + F, \\ a'(t) = Cu(t), \\ u(0) = u^{0}, \\ a(0) = a^{0}. \end{cases}$$

A is introduced in C. Wang. 2014,

$$a = (h, \theta), \quad Cu = (h', \omega).$$

Theorem (Null controllability of the linearized system)

For all F, u^0 , a^0 there exists a control $v \in L^2(0, T; [L^2(\mathcal{O})]^2)$ such that u(T) = 0 and a(T) = 0.

Main steps of the proof

We use the theory of O. Imanuvilov, T. Takahashi. 2007.

- Main ingredient : Carleman estimate for the adjoint system of the linearized problem.
- Difficulties :
 - Control the velocity of the rigid body with the fluid velocity:

$$||u_S \cdot n||_{L^2(\partial S)} \leq C ||u||_{L^2(\mathcal{F})},$$

$$\beta_{S} \|u_{S} \cdot \tau\|_{L^{2}(\partial S)} \leq C \left(\|u\|_{L^{2}(\partial \mathcal{F})} + \|u\|_{L^{2}(\mathcal{F})} + \|(\nabla \times u)_{\tau}\|_{L^{2}(\partial \mathcal{F})} \right).$$

Table of Contents

1 Change of variable

2 Linearized system

Fixed-point

Fixed-point

$$\begin{cases} \partial_{t}u - \nabla \cdot \mathbb{T}(u, p) = v1_{\mathcal{O}} + F(u, p) & t \in (0, T), \ y \in \mathcal{F}, \\ \nabla \cdot u = 0 & t \in (0, T), \ y \in \mathcal{F}, \end{cases}$$

$$u_{S} = h'(t) + \omega(t)y^{\perp}, \quad y \in \partial S,$$

$$\begin{cases} mh''(t) = -\int_{\partial S} \mathbb{T}(u, p)n \ d\Gamma & t \in (0, T), \\ J\omega'(t) = -\int_{\partial S} y^{\perp} \mathbb{T}(u, p)n \ d\Gamma & t \in (0, T), \end{cases}$$

$$\begin{cases} u_{n} = 0 & t \in (0, T), \ y \in \partial \Omega, \\ [2\nu D(u)n + \beta_{\Omega}u]_{\tau} = 0 & t \in (0, T), \ y \in \partial S, \\ [2\nu D(u)n + \beta_{S}(u - u_{S})]_{\tau} = 0 & t \in (0, T), \ y \in \partial S. \end{cases}$$

There exists a function $\rho \in C([0, T])$ such that the application

$$\Phi: f \longrightarrow F(u, p)$$

defines a contraction on

$$K = \left\{ f \in L^2(0,T;[L^2(\mathcal{F})]^2), \quad \left\| \frac{f}{\rho} \right\|_{L^2(0,T;[L^2(\mathcal{F})]^2)} \le R \right\} \text{ and } \Phi(K) \subset K$$

Conclusion and perspectives

- Global controllability.
- Reduce the controls.

Navier Stokes system: S.Guerrero and C.Montoyay. 2017

• Deformable structure : Dirichlet boundary condition : J.Lequeurre 2013

Thank you for your attention