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Setting

(W )


∂2
t u −∆xu = 0 in ]0,+∞[×M

(u(0), ∂tu(0)) = (u0, u1) ∈ H1 × L2

M Riemannian manifold, connected, compact, without boundary, with
dimension d.

M = Ω open subset of Rd , connected, bounded, with smooth
enough boundary ( homogeneous Dirichlet condition ).

H = C ([0,+∞[,H1) ∩ C 1([0,+∞[, L2)

Eu(t) = ||∇xu(t, .)||2L2(Ω) + ||∂tu(t, .)||2L2(Ω) = Eu(0)
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ω open subset of Ω and T > 0 ( suitable )
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Γ open subset of ∂Ω and T > 0 ( suitable )
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The Goal

Provide internal or boundary exact control results in the case of
non smooth metrics.
Given (u0, u1), find a control vector f ( resp. g) s.t the solution of{

∂2
t u −∆xu = χωf

(u(0), ∂tu(0)) = (u0, u1)

resp. 
∂2
t u −∆xu = 0

u = χΓg on ∂Ω
(u(0), ∂tu(0)) = (u0, u1)

satisfies u(T ) = ∂tu(T ) = 0.

Tool : By HUM , we need an observability estimate for the wave equation
(W).
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Observability estimates

Boundary observation

Eu(0) ≤ c

∫ T

0

∫
Γ

∣∣∣∂u
∂n

(t, x)
∣∣∣2dσdt

Remark: The converse is ”always” true :∫ T

0

∫
∂Ω

∣∣∣∂u
∂n

(t, x)
∣∣∣2dσdt ≤ c Eu(0)

→ Hidden regularity.
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Internal observation

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt (O)

Or at least

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + c ||(u0, u1)||2L2(M)×H−1(M) (RO)

→ unique continuation property....

Or either observation with loss

Eu(0) ≤ c ||u||2Hm((0,T )×ω), m > 1 (OL)

→ (RO) can be interpreted as propagation of the H1 wave front of u.
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Other Applications

→ Stabilization
Eu(t) ≤ C exp−γtEu(0)

for solutions of the damped equation

∂2
t u −∆xu + a(x)∂tu = 0

→ Inverse problems
Stability results, ....
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State of the art

80’ : Observability estimates under the Γ-condition of J.L. Lions.
→ Metric of class C 1.
→ Multiplier techniques.

90’ : Microlocal conditions and microlocal tools ( Rauch and Taylor
(75’), Bardos, Lebeau and Rauch (92’), Burq and Gérard (97’)).
The geometric control condition (G.C.C) : a microlocal condition,
stated in the compressed cotangent bundle of Melrose-Sjöstrand (82’).

→ Microlocal and pseudo-differential techniques : propagation of
wave front sets and supports of microlocal defect measures.
→ The condition is optimal but....... a priori needs smooth metric
and smooth boundary.
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97’ N. Burq : Boundary observability: C 2-metric and C 3-boundary.

The OL theorem of Fanelli-Zuazua (2014)

1-D setting, Ω =]0, 1[, a(x)∂2
t u − ∂2

xu = 0.

→ Classical boundary observation for a(x) ∈ Z ( Zygmund class ) and
boundary observation with loss for a(x) ∈ LZ ( Log-Zygmund class ).
→ For a(x) worse that LZ , infinite loss of derivatives :
No Observability ! (See also the counter-example of Castro - Zuazua

( 03’)).
→ Proof: 1-dimensional technique: the sidewise energy estimates, i.e
hyperbolic energy estimates by interchanging time ←→ space.
( Colombini, Spagnolo, Lerner, Métivier, Fanelli....)
→ 1-D geometry: all characteristic rays reach the boundary in
uniform time.
Question: What about dimensions higher than 1, where geometry is

more evolved ???
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Geometric Control Condition I
The couple (ω,T ) satisfies the geometric control condition (G.C.C), if
every geodesic of Ω issued at t = 0 and travelling with speed 1, enters in
ω before the time T .
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Geometric Control Condition II
The couple (Γ,T ) satisfies the geometric control condition (G.C.C), if
every generalized bicharacteristic of the wave symbol, issued at t = 0
and travelling with speed 1, intersects the boundary subset Γ at a
nondiffractive point, before the time T .

Hyperbolic Non Diffractive
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Diffractive Glancing
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Stability properties

Under GCC, observability/controllability is stable with respect to small
Lipschitz perturbations.

Denote A(x) = (aij(x)), d × d symmetric definite positive matrix,
and κ a real valued function, κ(x) > 0 ( a density ).

Denote A = (A, κ) ,

∆A =
1

κ(x)

∑
ij

∂jaij(x)κ(x)∂i

and consider the wave operator

PA = ∂2
t −∆A

→ With κ = (det A)−1/2, ∆A is the Laplace-Beltrami operator attached
to the metric A.
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Theorem (Burq-D-Le Rousseau 19’)

Assume that A = (A, κ) is smooth and that (ω,T ) ( resp. ( Γ,T ))
satisfies (GCC) for PA.
Consider Uε an ε-neighborhood of A in W 1,∞, and B ∈ Uε .
Then for ε small enough, the (classical) observability estimate holds true

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2κdxdt

(
resp.

∫ T

0

∫
Γ

∣∣∣∂u
∂n

(t, x)
∣∣∣2κdσdt)

for every solution of

PBu = ∂2
t u −∆Bu = 0, u|∂Ω = 0

Corollary

Under conditions above, we get exact controllability for PB = ∂2
t −∆B,

in time T .
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Comments

→ The wave equation is well posed for PB (Colombini, Spagnolo ...)

→ No geometry setting for the metric B !!!

→ One can take ∂Ω of class C 2.

→ Under GCC, observability/controllability is stable with respect to
small Lipschitz perturbations .

→ For a given metric B ∈W 1,∞, we cannot decide if PB is observable or
not.

→ In particular, what happens for B ∈ C 1 ???
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Remark
Exact controlability property itself is stable by lower (first) order
perturbations of the Laplace operator, but not by perturbations of the
geometry/metric.
Consider the unit sphere Sd of Rd+1 endowed with its standard metric and
with control domain ω = {x ∈ Sd ; x1 > 0}.

→ Exact controlability holds true for this geometry (Lebeau 92’)

→ It doesn’t hold for ωε = {x ∈ Sd ; x1 > ε}.
( which is ε-close to Lebeau’s example in C∞ topology).

1) The assumption that the asymptotic geometry satisfies GCC cannot be
replaced by the assumption that is satisfies the exact controlability
property.
2) Our perturbation argument will have to be performed on the proof of
the fact that GCC implies exact controllability and not on the final
property itself.
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Stability result : Proof in the boundaryless case

Contradiction argument

‖A −Ak‖W 1,∞ → 0, and for each k , ‖(uk,p0 , uk,p1 )‖H1×L2 = 1

Pku
p
k = ∂2

t u
p
k −∆Ak

upk = 0 on (0,T )× Ω

and ∫ T

0

∫
ω
|∂tupk |

2dxdt ≤ 1/p, ∀p ≥ 1

Denoting ukk  uk , ‖(uk0 , uk1 )‖H1×L2 = 1 and ‖uk‖H1((0,T )×ω) → 0.
Moreover assume

uk ⇀ 0 weakly in H1((0,T )× Ω)

Let µ be a microlocal defect measure attached to the sequence uk .
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P0uk = (P0 − Pk)uk = (∆Ak
−∆A)uk −→ 0 in H−1

Consider Q = q(t, x ;Dt ,Dx) ∈ Op(S1
cl).

And calculate the bracket(
[P0,Q]uk , uk

)
L2

=
(

[∆Ak
−∆A,Q]uk , uk

)
L2

+ o(1)k→∞

 
(

[∂j(a
k
ij − a0

ij)∂i ,Q]uk , uk

)
L2
≈ −

(
[(akij − a0

ij),Q]∂iuk , ∂juk

)
L2

Theorem (Calderon, Coifman-Meyer 85’)

For any function m ∈W 1,∞(Rd+1), the bracket [m,Q] continuously maps
L2(Rd+1) in itself and

‖[m,Q]‖L2→L2 ≤ C‖m‖W 1,∞

Thus
(

[P0,Q]uk , uk

)
L2
−→ 0 and tHp0µ = 0.

µ is invariant along the hamiltonian flow of P0 (propagation).
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Behavior of the HUM control process

(W )


∂2
t u −∆Au = χ2

ω(x)f in ]0,T [×Ω
u = 0 on ]0,T [×∂Ω
(u(0), ∂tu(0)) = (u0, u1) ∈ H1

0 × L2

We look for f ∈ L2(]0,T [×Ω), s.t

(u(T ), ∂tu(T )) = (0, 0)

By HUM and under (G.C.C), we can take f solution of

(W ′)


∂2
t f −∆Af = 0 in ]0,T [×Ω

f = 0 on ]0,T [×∂Ω
(f (0), ∂t f (0)) = (f0, f1) ∈ L2 × H−1
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The map 
Λ : H1

0 × L2 → L2 × H−1

(u0, u1)→ (f0, f1)

is an isomorphism; this is HUM optimal control operator.

Denote by fA the HUM control attached to PA, i.e the solution of (W’).
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Theorem (D-Lebeau, 2009)

In the setting above and under (G.C.C),
a) For all s ≥ 0,

Λ : Hs+1 × Hs → Hs × Hs−1

is an isomorphism.

b) ∥∥∥Λψ(2−kD)− ψ(2−kD)Λ
∥∥∥ ≤ C2−k/2

c) If M is a Riemannian manifold without boundary, Λ is a pseudo
differential operator.

Here ∑
k≥0

ψ(2−kD) = Id

is the Littlewood-Paley decomposition.
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Behavior of the HUM control process

Let A = (A, κ) be smooth and such that (ω,T ) satisfies (GCC).

Theorem

For any C∞- neighborhood U of A, there exist A′ ∈ U and an initial data
(u0, u1) , ||(∇Au0, u1)||L2×L2 = 1, s.t the respective solutions u and v of

∂2
t u −∆Au = χ2

ω(x)fA

∂2
t v −∆A′v = χ2

ω(x)fA

(u(0), ∂tu(0)) = (v(0), ∂tv(0)) = (u0, u1) ∈ H1
0 × L2

satisfy
EA(u − v)(T ) = EA(v)(T ) ≥ 1/2

Moreover,
||fA − fA′ ||L2((0,T )×ω) ≥ c > 0

22 / 42



Remarks

(GCC) also satisfied by (ω,T ) for the metric A′.

→ fA′ is well defined.

For fixed initial data, the map

(C∞(Ω))d
2+1 −→ L2((0,T )× ω)

A = (A, κ) −→ fA

is not continuous.

This result is not valid for control of smooth data.

Proof : Choosing A′ = (1 + ε)A, one has CharPA ∩ CharPA′ = {0}.....
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Proof of the observability estimate

Remind the goal : Prove observability estimate for the waves with rough
metric ( of class C 1).

Strategy

→ First prove

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2dxdt + ||(u0, u1)||2L2×H−1

→ In the smooth case :

Contradiction argument and propagation of micro local defect measures.
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Back to non smooth metric

To be achieved : Prove a propagation result for µ, in a low regularity
setting.
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Key point : C 0 - ODE’s

−→ Study the propagation properties of a nonnegative Radon measure µ
on Rd , subject to

tXµ = 0 in D′(Rd),

i.e
〈µ,Xχ〉 = 0 ∀χ ∈ C 1

0 (Rd),

where the vector field

X =
d∑
1

aj(x)∂xj

has continuous coefficients.
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Warm-up : The smooth case

If X has smooth ( C 1 or Lipschitz ) coefficients, it admits a flow given by

Φs(x) = (x1(s), ....xd(s))

dΦs

ds
= XΦs , Φ0(x) = x .

For χ ∈ C 1
0 (Rd),

〈tXµ, χ(Φs)〉 = 〈µ,Xχ(Φs)〉 = 〈µ, d
ds
χ(Φs)〉 =

d

ds
〈µ, χ(Φs)〉 = 0

〈µ, χ(Φs)〉 = 〈µ, χ〉, ∀s.

−→ Propagation for the measure µ
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Theorem (Ambrosio-Crippa 13’ , Burq-D-Le Rousseau 19’)

Consider X a continuous vector field on Rd and µ a nonnegative Radon
measure on Rd solution to tXµ = 0 in the sense of distributions.
Then, the support of the measure µ is a union of maximally extended
integral curves of X .

1 In other words, if x0 ∈ supp(µ), then there exists a neighborhood of
x0 and an integral curve γ of X , x0 ∈ γ, and γ ⊂ supp(µ) locally.

2 In particular if the trajectory γ is unique, then γ ⊂ supp(µ).

3 Propagation of the support of the measure µ.

4 Ambrosio-Crippa result is only valid in the free space ( away from
boundary ).

5 The positivity of µ is crucial !

−→ Proof : Ascoli theorem + positive commutators....
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x0 ∈ supp(µ) and γ ⊂ supp(µ)
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The main result

Theorem (Burq-D-Le Rousseau 19’)

Assume that A = (A, κ) is of class C 1 and the domain Ω of class C 2, and
that (ω,T ) ( resp. ( Γ,T )) satisfies (GGCC).
Then the observability estimate

Eu(0) ≤ c

∫ T

0

∫
ω
|∂tu(t, x)|2κdxdt

(
resp.

∫ T

0

∫
Γ

∣∣∣∂u
∂n

(t, x)
∣∣∣2κdσdt)

holds true for every solution of

PAu = ∂2
t u −∆Au = 0, u|∂Ω = 0

Corollary

Under conditions above, we get exact controllability for PA = ∂2
t −∆A,

in time T .
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Semi-classical setting : h-pseudo-differential calculus

Denote by h ∈ (0, h0] a small parameter.

For a ∈ L1
loc(Rd

x × Rd
ξ ) such that

M(a) = max
|α|≤d+1

ess sup(x ,ξ)

∣∣∂αξ a(x , ξ)
∣∣ (1 + |ξ|)d+1 < +∞,

we set for u ∈ L2(Rd)

Oph(a)u(x) = a(x , hDx)u(x) = (2π)−d
∫

e ix ·ξa(x , hξ)û(ξ)dξ.
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Theorem (L2-Continuity)

In the setting above, a(x , hDx) is uniformly bounded on L2(Rd) and

‖a(x , hDx)‖L(L2(Rd )) ≤ CdM(a).

Theorem (Bracket Lemma)

Assume that a(x , ξ) ∈ S(Rd × Rd) . Then

∀θ = θ(x) ∈ C (Rd), ‖θ‖L∞ ≤ C , lim
h→0
‖[a(x , hDx), θ]‖L(L2(Rd )) = 0

Moreover if θ ∈W 1,∞(Rd), then

‖[a(x , hDx), θ]‖L(L2(Rd )) ≤ C h‖θ‖W 1,∞

−→ Key tool : Schur Lemma.
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Semi-calssical measures

We denote by Σ(R2d), the space of functions a ∈ L1(Rd
x × Rd

ξ ) defined
previously and have compact supports (in the x variable)

Definition
Let hk → 0 for k → +∞, be a sequence of scales, and (uk) a sequence
bounded in L2

loc(Rd). A measure µ on R2d is a semi-classical measure
(s.c.m) for the sequence (uk) at scale (hk) iif for any a(x , ξ) ∈ Σ(R2d)

lim
k→+∞

(
a(x , hkDx)uk , uk

)
L2(Rd )

= 〈µ, a〉.

Properties

Support localization .

Propagation up to the boundary (smooth metric).
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The propagation equation

Theorem (Gérard-Leichtnam 93’, Burq 97’, Burq-D-Le Rousseau 19’)

The two measures µ and ν satisfy in the distributions sense

tHpA(µ) =

∫
ρ∈H∪G

δ(ξ − ξ+(ρ))− δ(ξ − ξ−(ρ))

< ξ+ − ξ−, n(x(ρ)) >
ν(dρ).

Measures
Here µ is a s.c.m attached to (uk) in L2(R× Rd) and ν is a s.c.m
attached to (vk = ∂uk

∂νk
) in L2(R× ∂Ω) ( at some scale hk ).

Tool : Careful examination of the bracket [PA,Q] + Weierstrass
preparation theorem....

Consequence : The support of µ is a union of closed generalized
bicharacteristic rays of HpA .

−→ Melrose - Sjöstrand theory for continuous hamiltonian field HpA .
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Proof of the propagation result (away from the boundary)

Proposition 1 Let X be a C 0-vector field on Ω an open set of Rd . For a
closed set F of Ω, the following two properties are equivalent :

1 The set F is a union of maximally extended integral curves of the
vector field X .

2 For any compact K ⊂ Ω where the vector field X does not vanish,
∀ε > 0, ∃δ0 > 0, ∀x ∈ K ∩ F , ∀δ ∈]0, δ0],

B
(
x + δX (x), δε

)
∩ F 6= ∅.

Proposition 2 If µ is a nonnegative measure on Ω solution to tXµ = 0 in
the sense of distributions , then the closed set F = supp(µ) satisfies the
second property in Proposition 1.
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Proof of 2) =⇒ 1).
Let n ≥ 1 and x ∈ F . Set xn,0 = x and ε = 1/n and apply 2).

There exists 0 < δn ≤ 1/n and a point

xn,1 ∈ F ∩ B
(
xn,0 + δnX (xn,0), δn/n

)
.

Perform this construction again, yet starting from xn,1 instead of xn,0.

If a sequence of points xn,0, xn,1, . . . , xn,Ln is obtained in this manner one
has

xn,`+1 ∈ F ∩ B
(
xn,` + δnX (xn,`), δn/n

)
, ` = 0, . . . , Ln − 1. (1)
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Define the affine curve ( the dotted line)

γn(s) = xn,` + (s − `δn)
xn,`+1 − xn,`

δn
for s ∈ [`δn, (`+ 1)δn) and ` ≤ Ln − 1.
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Note that γn(s) remains in a compact set, uniformly with respect to n.
In this compact set X is uniformly continuous.

Note also that since xn,` ∈ F for ` ≤ Ln then one has

dist
(
γn(s),F

)
≤ δn(CK + 1/n), |s| ≤ S . (2)
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From (1), for ` ≥ 0 and s ∈ (`δn, (`+ 1)δn), we have

γ̇n(s) =
xn,`+1 − xn,`

δn
=

(
xn,` + δnX (xn,`) +O(1/n)

)
− xn,`

δn

= X (xn,`) +O(1/n).

Using the uniform continuity of the vector field X , we find

γ̇n(s) = X (γn(s)) + en(s),

where the error |en| goes to zero uniformly with respect to |s| ≤ S as
n→ +∞.
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Since the curve γn is continuous, we find

γn(s) = γn(0) +

∫ s

0
γ̇n(σ)dσ = x +

∫ s

0
X (γn(σ))dσ +

∫ s

0
en(σ) dσ. (3)
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We now let n grow to infinity. The family of curves
(s 7→ γn(s), |s| ≤ S)n∈N∗ is equicontinuous and pointwise bounded; by the
Arzelà-Ascoli theorem we can extract a subsequence (s 7→ γnp)p∈N that
converges uniformly to a curve γ(s), |s| ≤ S . Passing to the limit
np → +∞, we find that γ(s) is solution to

γ(s) = x +

∫ s

0
X (γ(σ))dσ.

Finally, for any |s| ≤ S , there exists (yp)p ⊂ F such that
limp→+∞ yp = γ(s). Since F is closed we conclude that γ(s) ∈ F .
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