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The stabilizability problem

We consider the control system_y = f (y; u) wherey in Rn is the state and
u in Rm is the control. We assume thatf (0; 0) = 0 .

Problem
Does there existsu : Rn ! Rm vanishing at0 such that0 2 Rn is (locally)
asymptotically stable for_y = f (y; u(y))? (If the answer is yes, one says
that the control system is locally asymptotically stabilizable.)

Remark
The mapu : y 2 Rn 7! Rm is called a feedback (or feedback law). The
dynamical system_y = f (y; u(y)) is called the closed loop system.



Regularity of feedback laws

The regularity ofy 7! u(y) is an important point. Withu continuous,
asymptotic stability implies the existence of a smooth strict Lyapunov
function and one has robustness with respect to small actuator errors as
well as small measurement errors.
If u is discontinuous, one needs to de�ne the notion of solution of the
closed loop system_y = f (y; u(y)) and study carefully the robustness of the
closed loop system.



Controllability

Let T > 0. Given two statesy0 and y1, does there exist a control
t 2 [0; T] 7! u(t) which steers the control system fromy0 to y1, i.e. such
that

�
_y = f (y; u(t)) ; y(0) = y0�

)
�
y(T) = y1�

?(1)

If the answer is yes, the control system is said to be controllable on[0; T].



Controllability of linear control systems

The control system is

(1) _y = Ay + Bu; y 2 Rn ; u 2 Rm ;

whereA 2 Rn� n and B 2 Rn� m .

Theorem (Kalman's rank condition (1960))

The linear control system_y = Ay + Bu is controllable on[0; T] if and only
if

(2) Spanf A i Bu; u 2 Rm ; i 2 f 0; 1; : : : ; n � 1gg = Rn :



Small-time local controllability

We assume that(ye; ue) is an equilibrium, i.e.,f (ye; ue) = 0 . Many
possible choices for natural de�nitions of local controllability. The most
popular one isSmall-Time Local Controllability (STLC) : the state
remains close toye, the control remains close toue and the time is small.
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The linear test

We consider the control system_y = f (y; u) where the state isy 2 Rn and
the control isu 2 Rm . Let us assume thatf (ye; ue) = 0 . We are
interested in the small-time local controllability of_y = f (y; u) around
(ye; ue). L. Nirenberg, besides to be a great mathematician, always gave
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is
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The linear test

We consider the control system_y = f (y; u) where the state isy 2 Rn and
the control isu 2 Rm . Let us assume thatf (ye; ue) = 0 . We are
interested in the small-time local controllability of_y = f (y; u) around
(ye; ue). L. Nirenberg, besides to be a great mathematician, always gave
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is

Have you tried to linearize?

We follow Nirenberg's advice. The linearized control system at (ye; ue) is
the linear control system_y = Ay + Bu with

A :=
@f
@y

(ye; ue); B :=
@f
@u

(ye; ue):(1)

If the linearized control system_y = Ay + Bu is controllable, then
_y = f (y; u) is small-time locally controllable at(ye; ue).



Stabilizability of linear controllable systems

Notations. For a matrixM 2 Rn� n , PM denotes the characteristic
polynomial ofM : PM (z) := det (zI � M ):
Let us denote byPn the set of polynomials of degreen in z such that the
coe�cients are all real numbers and such that the coe�cient of zn is 1.
One has the following theorem.

Theorem (Pole shifting theorem, M. Wonham (1967))

Let us assume that the linear control system_y = Ay + Bu is controllable.
Then

(1)
�

PA+ BK ; K 2 Rm� n 	
= Pn :

Corollary
If the linear control system_y = Ay + Bu is controllable, there exists a
linear feedbacky 7! u(y) = Ky such that0 2 Rn is (globally)
asymptotically stable for the closed loop system_y = Ay + Bu(y).



Application to nonlinear controllable systems

We assume thatf (0; 0) = 0 . Let us consider the linearized control system
_y = Ay + Bu of _y = f (y; u) at (0; 0) 2 Rn � Rm :

(1) A :=
@f
@y

(0; 0); B :=
@f
@u

(0; 0):

Let us assume that the linearized control system_y = Ay + Bu is
controllable. Then, by the pole-shifting theorem, there exists K 2 Rm� n

such that � (A + BK ) = f� 1g. Let us consider the feedbacku(y) = Ky .
Then, if X (y) := f (y; u(y)) , X 0(0) = A + BK . Hence, by Lyapunov's �rst
theorem,0 2 Rn is locally asymptotically stable for the closed loop system
_y = f (y; u(y)) .
In conclusion, if the linearized control system is controllable, then

The control system_y = f (y; u) is small-time locally controllable at
(0; 0).
The control system_y = f (y; u) is locally asymptotically stabilizable
(at the equilibrium(0; 0)).



A �rst notion of rapid stabilization: Rapid exponential
stabilization

We consider the control system

(1) _y = f (y; u);

where the state isy 2 Rn and the control isu 2 Rm . We assume that
f (0; 0) = 0 . A �rst possible notion for rapid exponential is the rapid
exponential stabilization. It is the following property: For every� > 0,
there exist a feedback lawy 2 Rn 7! u(y) 2 Rm , C > 0 and r > 0 such
that, for every solution of the closed loop system_y = f (y; u(y)) such that
jy(0)j 6 r , one has

(2) jy(t)j 6 Ce� �t jy(0)j; 8t > 0?



Rapid exponential stabilization and the linear test

One has the following theorem.

Theorem (Corollary of the Pole shifting theorem)

If the linear control system_y = Ay + Bu is controllable, the rapid
exponential stabilization property holds for this controlsystem. If the
linearized control control system at(0; 0) 2 Rn � Rm of _y = f (y; u) is
controllable, then_y = f (y; u) is rapidly exponentially stabilizable.
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Cart-inverted pendulum: The equations

Let

y1 := �; y 2 := �; y 3 := _�; y 4 := _�; u := F;(1)

The dynamics of the cart-inverted pendulum system is_y = f (y; u), with
y = ( y1; y2; y3; y4)tr and

f :=

0

B
B
B
B
B
B
@

y3

y4

mly 2
4 siny2 � mg siny2 cosy2

M + m sin2 y2
+

u
M + m sin2 y2

� mly 2
4 siny2 cosy2 + ( M + m)gsiny2

(M + m sin2 y2)l
�

u cosy2

(M + m sin2 y2)l

1

C
C
C
C
C
C
A

:



Stabilization of the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control system around
(0; 0) 2 R4 � R is _y = Ay + Bu with

A =

0

B
B
B
B
@

0 0 1 0
0 0 0 1

0 �
mg
M

0 0

0
(M + m)g

Ml
0 0

1

C
C
C
C
A

; B =
1

Ml

0

B
B
@

0
0
l

� 1

1

C
C
A :(1)

One easily checks that this linearized control system satis�es the Kalman
rank condition and therefore is controllable. Hence the cart-inverted
pendulum is small-time locally controllable at(0; 0) 2 R4 � R and is
rapidly exponentially stabilizable (at the equilibrium(0; 0)).



Necessity to remove theC1-smoothness of the feedback laws

Let us consider the control system

(1) _y1 = y1 � y3
2; _y2 = u;

where the state is(y1; y2)tr 2 R2 and the control isu 2 R. The linearized
control system of (1) at(0; 0) 2 R2 � R is

(2) _y1 = y1; _y2 = u;

which is not controllable. However the nonlinear control system (1) is
small-time locally controllable around(0; 0) 2 R2 � R. This can been seen
by the return method, i.e. constructs small (but not0) trajectories going
from 0 to 0 and having a linearized control system which is controllable.
This can been also checked by using criteria relying on iterated Lie brackets.



But there is nou 2 C1(R2; R) such that0 2 R2 is asymptotically stable for
the closed loop system_y = X (y)

(1) X 1(y) = y1 � y3
2; X 2(y) = u(y):

Indeed, one has

(2) X 0(0) =
�

1 0
k1 k2

�

and we cannot have both traceX 0(0) 6 0 and detX 0(0) > 0. However, as
proved by Dayawansa and Martin (1989), there are continuousfeedback
lawsu such that0 2 R2 is asymptotically stable for_y1 = y1 � y3

2,
_y2 = u(y). See also below.



A simple example

Since we have to relax the regularity on the feedback laws, one can be
more ambitious and look for �nite-time stability instead ofasymptotic
stability as shows the following simple example. One considers the simplest
control system

(1) _y = u;

where the state isy 2 R and the control isu 2 R. We consider the
feedback lawu(y) := � (3=2)jyj1=3sign(y). The solution to the Cauchy
problem _y = � (3=2)jyj1=3sign(y), y(0) = y0 is

y(t) = jjy0j2=3 � t j3=2sign(jy0j2=3 � t) if t 2 [0; jy0j2=3];(2)

y(t) = 0 if t > jy0j2=3:(3)

This feedback law leads to �nite-time stability.



Finite-time stability

Let X 2 C0(Rn ; Rn ) and ye 2 Rn be such thatX (ye) = 0 . One adopts
the following de�nition
De�nition (Finite-time stable)

One says thatye is �nite-time stable for _y = X (y) if it is stable and there
exists� > 0 and � > 0 such that

(1) ( _y = X (y) and jy(0) � yej < � ) ) (y(t) = 0 ; 8t > � )



Finite-time stabilization

Let us now consider the control system_y = f (y; u) with
f : Rn � Rm ! Rn of classC1 and let (ye; ue) 2 Rn � Rm be an
equilibrium of _y = f (y; u), i.e. f (ye; ue) = 0 .

De�nition (Finite-time stabilizable)

One says that(ye; ue) is �nite-time stabilizable for _y = f (y; u) if there
existsu 2 C0(Rn ; Rm ) such thatu(ye) = ue and ye is �nite-time stable for
_y = f (y; u(y)) .



The case of linear systems

Let us consider �nite dimensional control systems of the following form

_y = Ay + Bu(1)

whereA 2 Rn� n , B 2 Rn� m , the state isy 2 Rn and the control is
u 2 Rm .

Theorem (JMC-L. Praly (1991))

The control system(1) is �nite-time stabilizable if and only if it is
controllable.



An example of �nite-time stabilization

(1) _y1 = y2; _y2 = u;

where the state is(y1; y2)tr 2 R2 and the control isu 2 R.
We use another very important Nirenberg's advice



An example of �nite-time stabilization

(1) _y1 = y2; _y2 = u;

where the state is(y1; y2)tr 2 R2 and the control isu 2 R.
We use another very important Nirenberg's advice

Have you tried the dimension 2?



An example of �nite-time stabilization

(1) _y1 = y2; _y2 = u;

where the state is(y1; y2)tr 2 R2 and the control isu 2 R.
We use another very important Nirenberg's advice

Have you tried the dimension 2?

We go one step further and try the dimension 1. Then the 1-dimensional
linear control system is

(2) _y1 = y2;

where the state isy1 2 R and the control isy2 2 R.
One then notes that, for� 2 (0; 1), the feedback law

(3) �y2(y1) := � sign(y1)jy1j� := �f y1g�

�nite-time stabilizes the control system (2). See above for� = 1=3.



The standard backstepping approach is a method to stabilizethe control
system

(1) _y1 = f (y1; y2); _y2 = u2;

where the state is(ytr
1 ; ytr

2 )tr 2 Rn = Rn1+ n2 , y1 2 Rn1 , y2 2 Rn2 , and the
control isu 2 Rn2 if one knows how to stabilize the control system

(2) _y1 = f (y1; y2);

where the state isy1 2 Rn1 and the control isy2 2 Rn2 by means of a
feedback law of classC1. Let us recall the method. Just to simplify the
notation we assume thatn2 = 1 and that (ye; ue) = (0 ; 0). Let
�y2 : Rn2 ! R, y1 7! �y2 be of classC1, vanishing at0 2 Rn1 and such that
0 is asymptotically for the closed-loop system_y = f (y1; �y2(y1)) . Let
V 2 C1 (Rn1 ), y1 7! L (y1), be a Lyapunov function of_y1 = f (y1; �y2(y1)) .
We consider the control Lyapunov function for the control system (1)

(3) V (y1; y2) := L (y1) +
1
2

(y2 � �y2(y1))2

The natural idea behind this de�nition is to penalize the fact that
y2 6= �y2(y1).



Along the trajectories of_y1 = f (y1; y2); _y2 = u2, one has

_V = ( L 0(y1) � (y2 � �y2(y1))�y0
2(y1)) f (y1; y2) + ( y2 � �y2(y1))u

= L 0(y1)f (y1; �y2(y1))

+( y2 � �y2(y1))
�

L 0(y1) f (y1 ;y2)� f (y1 ; �y2(y1 ))
y2 � �y2(y1 ) � �y0

2(y1)f (y1; y2) + u
�

:

Hence the feedback law

u(y1; y2) := �y0
2(y1)f (y1; y2)� L 0(y1)

f (y1; y2) � f (y1; �y2(y1))
y2 � �y2(y1)

� (y2 � �y2(y1))

leads to

_V = L 0(y1)f (y1; �y2(y1)) � (y2 � �y2(y1))2 < 0 for jy1j+ jy2j small but not0.

Hence this feedback law asymptotically stabilizes_y1 = f (y1; y2); _y2 = u2,



Let us follow this method for_y1 = y2, _y2 = u2, �y2(y1) = �f y1g� . One
takesL(y1) = y2

1=2 and

(1) V (y1; y2) =
1
2

y2
1 + ' (y1; y2) :=

1
2

y2
1 +

1
2

(y2 + f y1g� )2;

the idea of' being, again, to penalize the fact thaty2 6= �f y1g� .
Unfortunately thisV is not of classC1 on the full liney1 = 0 . There are
other ' which are more regular and which also penalizes the fact that
y2 6= �f y1g� . For example,

(2)
' (y1; y2) =

Ry2
�f y1g�

�
f sg1=� � y1

�
ds

= �
1+ � jy2j(1+ � )=� + y1y2 + 1

1+ � jy1j(1+ � ) ;

which is of classC1 and satis�es' (y1; y2) > 0 with equality if and only if
y2 = �f y1g� . For homogeneity issues, one then replaces (1) by

(3)
V (y1; y2) = �

1+ � jy1j1+ � + ' (y1; y2)
= �

1+ � jy2j(1+ � )=� + y1y2 + jy1j1+ � :



With this newV one has, along the trajectories of_y1 = y2, _y2 = u,

(1) _V =
�

f y2g(1=� ) + y1

�
u + y2

2 + (1 + � )f y1g� y2:

Note that, if y2 + f y1g� = 0 , then

(2) _V = � � jy1j2� 6 0:

Hence, by homogeneity argument, one sees that, if

(3) u := � kf y2 + f y1g� g2� � 1;

then, if k > 0 is large enough, there exists� > 0,

(4) _V 6 � �V 2�= (1+ � ) :

Note that u de�ned by (3) is continuous and vanishes at0 if 2� > 1.
Hence, taking� 2 (1=2; 1), the u de�ned by (3) leads to stabilization in
�nite time for _y1 = y2, _y2 = u provided thatk > 0 is large enough.



The general case_y1 = y2, _y2 = y3... _yn� 1 = yn, _yn = u

We consider the control linear control system

(1) _y1 = y2; _y2 = y3; : : : ; _yn� 1 = yn ; _yn = u;

where the state is(y1; y2; : : : ; yn� 1; yn )tr 2 Rn and the control isu 2 R.
Adapting the above construction and taking� 2 ((n � 1)=n;1) one can
get feedback laws leading to �nite-time stabilization. SeeJMC and L. Praly
(1992), P. Bhat and D. Bernstein (1998, 2002), Y. Hong (2002), Y. Hong,
Y. Xu, and J. Huang (2002), Y. Hong and Z.-P. Jiang (2006), E. Moulay
and W. Perruquetti (2006), E. Bernuau, W. Perruquetti, D. E�mov, and E.
Moulay (2015), B. d'Andréa-Novel, JMC, and W. Perruquetti (2020).
Note that it follows from this result that any linear controllable system in
�nite dimension are �nite-time stabilizable by means of stationary feedback
laws. The �nite-time stabilizability of nonlinear systemshaving having a
controllable linearized control system at(0; 0) 2 Rn � Rm follows from
homogeneity arguments (one uses here L. Rosier's result on the existence
of homogeneous Lyapunov for homogeneous vector �elds).



Obstruction to the stabilizability

Theorem (R. Brockett (1983))

If the control system_y = f (y; u) is locally asymptotically stabilizable then

(B ) the image byf of every neighborhood of(0; 0) 2 Rn � Rm is a
neighborhood of0 2 Rn .
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Equations for the slider

The slider is actuated by two propellers producing forcesFL and FR . The
sum of these two forces is directly linked to the acceleration of the vehicle,
whereas the di�erence acts on the angular dynamics. Let us denote
� 1 = FL + FR and � 2 = FR � FL , the dynamics can be written:

(1)

8
<

:

m •� 1 = cos( )� 1;
m •� 2 = sin(  )� 1;
I • = � 2;

wherem is the slider mass andI is the moment of inertia of the slider
about its center of mass.



Equations for the slider in the form_y = f (y; u)

Let

(
y1 = � 1; y2 = _� 1; y3 = � 2; y4 = _� 2;

y5 =  ; y 6 = _ ; u 1 =
� 1

m
; u2 =

� 2

I
:

(1)

Then the dynamics of the slider can be written in the form_y = f (y; u) with

(2) f (y; u) := ( y2; u1 cos(y5); y4; u1 sin(y5); y6; u2)tr :



Slider: Controllability and Brockett's condition

One has the following theorem.

Theorem
The slider control system is small-time locally controllable at the
equilibrium(0; 0) 2 R6 � R2 but does not satisfy the Brockett condition.

For the Brockett condition, consider the equation

(1) (y2; u1 cos(y5); y4; u1 sin(y5); y6; u2)tr = (0 ; 0; 0; �; 0; 0)tr :



A solution: Time-varying feedback laws

Instead ofu(y), useu(t; y). Note that asymptotic stability for time-varying
feedback laws is also robust (there exists again a strict Lyapunov function).
First use of time-varying feedback laws:

n = 1 : E. Sontag and H. Sussmann (1980).

For a driftless control system withn = 3 and m = 2 : C. Samson
(1992).



Continuous reachability

In order to deal with systems for which the linearized systemis not
controllable, we use the following de�nition.

De�nition
The origin (ofRn ) is locally continuously reachable in small timefor the
control system_y = f (y; u) if, for every positive real numberT, there exist
a positive real number" and u : �B " ! L 1 ((0; T); Rm ) such that

u 2 C0 � �B " ; L 1 ((0; T); Rm )
�

(1)

Supfj u(a)( t)j; t 2 (0; T)g ! 0 asa ! 0;(2)

(( _y = f (y; u(a)( t)) ; y(0) = a) ) (y(T) = 0)) ; 8a 2 �B " :(3)



Continuous reachability

In order to deal with systems for which the linearized systemis not
controllable, we use the following de�nition.

De�nition
The origin (ofRn ) is locally continuously reachable in small timefor the
control system_y = f (y; u) if, for every positive real numberT, there exist
a positive real number" and u : �B " ! L 1 ((0; T); Rm ) such that

u 2 C0 � �B " ; L 1 ((0; T); Rm )
�

(1)

Supfj u(a)( t)j; t 2 (0; T)g ! 0 asa ! 0;(2)

(( _y = f (y; u(a)( t)) ; y(0) = a) ) (y(T) = 0)) ; 8a 2 �B " :(3)

Open problem: Small-time local controllability and continuous reachability

Assume thatf is analytic and that _y = f (y; u) is small-time locally con-
trollable at (0; 0) 2 Rn � Rm . Is the origin (ofRn ) locally continuously
reachable in small time for the control system_y = f (y; u)?



Local continuous reachability and �nite-time stabilization

Theorem (JMC (1995))

Assumef is analytic, that0 2 Rn is locally continuously reachable in small
time for the control system_y = f (y; u), and that n 62 f2; 3g. Then, for
every positive real numberT, there exist" in (0; + 1 ) and u in
C0(R � Rn ; Rm ), of classC1 on R � (Rn n f 0g), T-periodic with respect
to time, vanishing onR � f 0g and such that, for everys 2 R,

(( _y = f (y; u(t; y)) and y(s) = 0) ) (y(� ) = 0 ; 8� > s)) ;(1)

( _y = f (y; u(t; y)) and jy(s)j 6 ") ) (y(� ) = 0 ; 8� > s + T)) :(2)

In particular0 is �nite-time stable for the closed-loop system
_y = f (y; u(t; y)) .



An example: The slider
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Let us recall that the dynamics of the slider can be written inthe form
_y = f (y; u) with

(1) f (y; u) := ( y2; u1 cos(y5); y4; u1 sin(y5); y6; u2)tr :

As mentioned above, the slider does not satis�es the Brockett condition at
the equilibrium(0; 0) 2 R6 � R2 and therefore is not locally asymptotically
stabilizable by means of stationary feedback laws (i.e. feedback lawsu(y)).
However it follows from our result on the stabilizability insmall time that
the following proposition holds.

Proposition
The slider is asymptotically and even in small time stabilizable by means of
periodic time-varying feedback laws (i.e. feedback lawsu(t; y) which are
periodic with respect to time).

Construction of a time varying feedback stabilizing the slider in small time
(B. d'Andréa-Novel, JMC, and W. Perruquetti (2019)).
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The problem

We consider the heat control system

(1) yt � yxx = 0 ; y(t; 0) = 0 ; y(t; 1) = u(t); t 2 [0; + 1 ); x 2 [0; 1];

where, at timet 2 [0; + 1 ), the state isy(t) 2 L 2(0; 1),
x 2 (0; 1) 7! y(t)(x) := y(t; x ) and the control isu(t) 2 R. We are
interested in

1 The rapid exponential stabilization of (1),
2 The �nite time stabilization of (1).

Note that the linear control system (1) is known to be null controllable.



Concerning the rapid stabilization we want to prove the following theorem

Theorem
Let � > 0. There a feedback lawu� : L 2(0; 1) ! R such that there exists
C(� ) > 0 such that, for every solution of

(2) yt � yxx = 0 ; y(t; 0) = 0 ; y(t; 1) = u� (y(t; �)) ; t 2 [0; + 1 ); x 2 [0; 1];

one has

(3) jy(t; �)jL 2 6 C(� )e� �t jy(0; �)jL 2 ; 8t > 0:

This theorem is a simple corollary of a pole shifting theoremdue to D.
Russell (1976). Let us give a proof due to D. Bo²kovi¢, M. Krstic and W.
Liu (2001). It relies on backstepping.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize �nite
dimensional control system of the form_x = f (x; y), _y = u. See above.
2. First application to PDE: JMC and B. d'Andréa-Novel (1998).
3. This method has been used on the discretization of partialdi�erential
equations by D. Bo²kovi¢, A. Balogh and M. Krstic in 2003.
4. A key modi�cation of the method by using a Volterra transformation of
the second kind is introduced by D. Bo²kovi¢, M. Krstic and W.Liu in
2001.
5. For a survey on this method with Volterra transformationsof the second
kind, see the book by M. Krstic and A. Smyshlyaevin 2008.



For more details

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 p. Pdf
�le freely available from my web
page.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize �nite
dimensional control system of the form_x = f (x; y), _y = u. See above.
2. First application to PDE: JMC and B. d'Andréa-Novel (1998).
3. This method has been used on the discretization of partialdi�erential
equations by D. Bo²kovi¢, A. Balogh and M. Krstic in 2003.
4. A key modi�cation of the method is introduced by D. Bo²kovi¢, M.
Krstic and W. Liu in 2001: They saw that at the continuous level, the
backstepping method corresponds to a Volterra transformation of the
second kind for the transformationT and well chosen target systems.
5. For a survey on this method with Volterra transformationsof the second
kind, see the book by M. Krstic and A. Smyshlyaev in 2008.



Backstepping and the 1D heat equation

We consider the heat control system

(1) yt � yxx = 0 ; y(t; 0) = 0 ; y(t; 1) = u(t); t 2 [0; + 1 ); x 2 [0; 1];

where, at timet 2 [0; + 1 ), the state isy(t) 2 L 2(0; 1),
x 2 (0; 1) 7! y(t)(x) := y(t; x ) and the control isu(t) 2 R. We are
interested in the rapid exponential stabilization of this linear (controllable)
control system. Let� 2 R. Consider the following controlled system
(called the target system)

(2) zt � zxx = � �z; z (t; 0) = 0 ; z(t; 1) = v(t); t 2 [0; + 1 ); x 2 [0; 1];

where, at timet 2 [0; + 1 ), the state isz(t) 2 L 2(0; 1),
x 2 (0; 1) 7! z(t)(x) := z(t; x ) and the control isv(t) 2 R. Note that for
(2) with z = 0 , one has

(3) jz(t)j2L 6 e� �t jz(0)j2L ; 8t > 0:



D. Bo²kovi¢, M. Krstic and W. Liu in 2001 looks for maps
T � 1 : L 2(0; 1) ! L 2(0; 1) y 7! z and K : L 2(0; 1) ! R, z 7! Kz such
that the target system (2) is transformed into the initial system (1) if
u = Kz + v. They choose to look forT � 1 in the class of Volterra
transform of the second kind:

(1) z(x1) := y(x1) �
Z x1

0
k(x1; x2)y(x2)dx2:

One of the advantages of the Volterra transforms of the second kind is that
there are invertible (ifk is smooth enough, for example in
L 2((0; 1) � (0; 1))). Note that, onceT is de�ned, we must take

(2) Kz =
Z 1

0
k(1; x2)y(x2)dx2:

Moreover, the feedback lawu(y) :=
R1

0 k(1; s)y(s)ds leads forz to the
closed loop system

(3) zt � zxx = � �z; z (t; 0) = z(t; 1) = 0 ;

which insures exponential stability forz with an exponential decay rate (in
L 2(0; 1)) at least equal to� .



Sincey 2 L 2(0; 1) ! z 2 L 2(0; 1) is an isomorphism the same holds for
the closed loop system

(1) yt � yxx = 0 ; y(t; 0) = 0 ; y(t; 1) =
Z 1

0
k(1; s)y(s)ds;

which shows the rapid exponential stabilizability of the initial heat control
system (with a method to compute a feedback law leading to an
exponential stability with an exponential decay rate as large as we want).



Kernel equation

Straightforward computations show that they system is equivalent to thez
system if and only ifk satis�es the following equation, called the kernel
equation,

(1)

8
><

>:

k11 � k22 = �k; 0 < x 2 < x 1 < 1;
k(x1; 0) = 0 ; 0 < x 1 < 1;

k(x; x ) = �
�
2

x; 0 < x < 1;

kii := @2
x i x i

k, i 2 f 1; 2g.



A method to prove the existence ofk

D. Bo²kovi¢, M. Krstic and W. Liu in 2001 proposed the following iterative
scheme. Let us make the following change of variables
t = x1 � x2; s = x1 + x2 and de�ne G(s; t) := k(x1; x2) on
T0 := f (s; t); t 2 [0; 1]; s 2 [t; 2 � t]g. Then k satis�es the kernel equation
if and only if

(1)

8
>>><

>>>:

Gst = �
�
4

G; in T0;

G(s; s) = 0 ; in [1; 2];

G(s;0) =
�
4

s; in [0; 2]:

One integrates the �rst equation of (1) with respect tot from 0 to t. One
gets, using also the third equality of (1),

(2) Gs(s; t) = Gs(s;0) �
�
4

Z t

0
G(s; t1)dt1 =

�
4

�
�
4

Z t

0
G(s; t1)dt1:

We integrate this equation with respect tos from t to s. Using also the
second equation of (1), we get



(1) G(s; t) =
�
4

(s � t) �
�
4

Z s

t

Z t

0
G(s1; t1)dt1ds1

One de�nes inductivelyGn : T0 ! R, n 2 N n f 0g, by requiring

G1(s; t) = 0 ;(2)

Gn+1 (s; t) =
�
4

(s � t) �
�
4

Z s

t

Z t

0
Gn (s1; t1)dt1ds1(3)

One gets, by induction onn, that

(4) Gn (s; t) = �
nX

k=1

(s � t)sk� 1tk� 1(� � )k

(k � 1)!k!4k ;

a sum which converges asn ! + 1 .



Formulas forG andk

Let

(1) I (x) :=
+ 1X

k=1

(� x)2k� 1

(k � 1)!k!22k� 1 :

Then

G(s; t) =
�
2

(s � t)
I (

p
�st )

p
�st

;(2)

k(x1; x2) =
�
2

x2
I (

p
� (x2

1 � x2
2))

p
� (x2

1 � x2
2)

:(3)



How to recover the null controllability with the backstepping
method (JMC and H.-M. Nguyen (2015))

From now on we assume that� > 1. Looking at the explicit expression of
the kernelk, one sees that

(1) jkjH 1 (�) 6 CeC
p

� ;

where

(2) � := f (x1; x2); 0 < x 2 < x 1 < 1g:

The inverse transform of

(3) z(x1) := y(x1) �
Z x1

0
k(x1; x2)y(x2)dx2;

has the form

(4) y(x1) := z(x1) �
Z x1

0
l (x1; x2)z(x2)dx2:

The exact expression ofl shows that

(5) jl jH 1 (�) 6 C�:



So if we apply the backstepping for� and during the interval of time[0; � ],
we have

(1) jy(� )jL 2 6 C� jz(� )jL 2 6 C�e � �� jz(0)jL 2 6 C�e � �� eC
p

� jy(0)jL 2 :

Similar estimates holds for the controly(t; 1). Let T > 0, and for
n 2 N n f 0; 1g, let tn = T(1 � 1=n2) and � n = n8. Let t1 := 0 and
� 1 := 1 . During the interval[tn ; tn+1 ) we apply the feedback law coming
from the backstepping with� := � n

Proposition (H.-M. Nguyen and JMC (2015))

lim
t ! T �

jy(t; �)jL 2 = 0 ;(2)

lim
t ! T �

u(t) = 0 :(3)

Hence this is a new method to prove the null controllability of the heat
equation in small time.



The estimates

jkjH 1 (�) 6 CeC
p

� ;(1)

jl jH 1 (�) 6 C�:(2)

are crucial for this method. Note that one can �nd related estimates in G.
Lebeau and L. Robbiano (1995) (in every space dimension).
Let us now turn to the case of the following more general1-D parabolic
equations

(3)
�

yt (t; x ) = ( a(x)yx (t; x ))x + c(x)y(t; x ) in (� 1; � 2) � [0; 1];
y(t; 0) = 0 ; y(t; 1) = u(t) for t 2 (� 1; � 2):

The target system is then

(4)
�

zt (t; x ) = ( a(x)zx (t; x ))x + c(x)z(t; x ) � �z in (� 1; � 2) � [0; 1];
z(t; 0) = 0 ; z(t; 1) = v(t) for t 2 (� 1; � 2):

We assume thata 2 H 2(0; 1), a > 0 in [0; 1], and that c 2 H 1(0; 1).



Proposition (H.-M. Nguyen and JMC (2015))

There exists a kernelk which allows to transform the initialy system into
the z system and one has, for� 2 [1; + 1 ),

jkjH 1 (�) 6 CeC
p

� ;(1)

jl jH 1 (�) 6 C�:(2)

Remark
Our proof is di�erent from the iterative scheme mentioned above. We
interpret the kernel equation onk (and l) as a wave equation de�ned in
[0; 1]2. Estimates(1) and (2) follow from an energy type estimate for the
wave equation which is somehow nonstandard in the sense thatthe energy
not only contains the gradient of the solutions but also the solutions; the
standard energy estimate only gives the exponent� in (1).



Small-time stabilization

However the above strategy does not seem lead to stabilization in �nite
time. This is due to the fact thatu(t; y) is small along the trajectories
starting from the time0 but might be quite large for a giveny and t ! T� .
In fact 0 2 L 2(0; 1) is (probably) not stable with this feedback law.



We look for time-varying feedback laws(t; y) 2 R � L 2(0; 1) 7! u(t; y) 2 R
satisfying the following three properties.

(P1). The feedback lawu is T-periodic with respect to time:

(1) u(t; y) = u(t + T; y) for every(t; y) 2 R � L 2(0; 1):

(P2). There exists a strictly increasing sequence(tn )n2 N of real numbers
such that

t0 = 0 ;(2)

lim
n! + 1

tn = T;(3)

u is of classC1 in [tn ; tn+1 ) � L 2(0; 1) for everyn 2 N:(4)

(P3). The mapu vanishes onR � f 0g and there exists a continuous
function M : [0; T) ! [0; + 1 ) such that

(5) ju(t; y2) � u(t; y1)j 6 M (t)jy2 � y1jL 2

8 (t; y1; y2) 2 [0; T) � L 2(0; 1) � L 2(0; 1):



Proposition

Assume thatF satis�es Properties(P1); (P2), and (P3). Let 0 6 s < T .
Then, for everyy0 2 L 2(0; 1), there exists a unique solution
y 2 C0

�
[s; T); L 2(0; 1)

�
of

(1)

8
>><

>>:

yt (t; x ) = yxx (t; x ) for (t; x ) 2 (s; � ) � [0; 1];

y(t; 0) = 0 ; y(t; 1) = u(t; y(t; �)) for t 2 (s; � );

y(s; �) = y0 for x 2 [0; 1]:



Proposition
Assume thatF satis�es Properties(P1); (P2), and (P3) and that there
exist C > 0 and �T 2 (0; T) such that

ju(t; y)j 6 Cjyj1=2
L 2 ; 8 (t; y) 2 [ �T ; T) � L 2(0; 1):(P4)

Then, for everys 2 R and for everyy0 2 L 2(0; 1), there exists a unique
solutiony 2 C0

�
[s;+ 1 ); L 2(0; 1)

�
of

(1)

8
>><

>>:

yt (t; x ) = yxx (t; x ) for (t; x ) 2 (s;+ 1 ) � [0; 1];

y(t; 0) = 0 ; y(t; 1) = u(t; y(t; �)) for t 2 (s;+ 1 );

y(s; �) = y0 for x 2 [0; 1]:

Notation � (t; s; y0) := y(t; �).



Theorem (JMC and H.-M. Nguyen (2015))

Let T > 0 and � > 0. There exists a time-varying feedback laws
(t; y) 2 R � L 2(0; 1) 7! u(t; y) 2 R satisfying Properties (P1), (P2), (P3)
and (P4) such that

(1) �( t + T; t; y0) = 0 for every(t; y0) 2 R � L 2(0; 1)

such that jy0jL 2 6 �

and such that the following uniform stability condition

(2)

(
8 " > 0; 9� > 0 such that,8 t0 2 R; 8 t 2 [t0; + 1 );

and 8 y0 2 L 2(0; 1);
�
jy0jL 2 6 �

�
)

�
j�( t; t 0; y0)j 6 "

�

holds. In particular our heat equation is small-time stabilizable by means of
time-varying feedback laws.



Open problem

Is it possible to stabilize in �nite time (or even in small time) the heat
equation by means of stationary feedback laws?

May be one can try to use the kernelk� (y) instead of the kernelk� (t ) with
� (y) converging to+ 1 asy ! 0.
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y(t; x )

y(t; x )

x



A KdV control system

yt + yx + yxxx + yyx = 0 ; t 2 [0; T]; x 2 [0; L ];(1)

y(t; 0) = y(t; L ) = 0 ; yx (t; L ) = u(t); t 2 [0; T]:(2)

where, at timet 2 [0; T], the control isu 2 R and the state is
y(t; �) 2 L 2(0; L ).



Controllability of the linearized control system

Theorem (L. Rosier (1997))

For everyT > 0, the linearized control system is controllable in timeT (in
L 2(0; L )) if and only

L 62 N:=

(

2�

r
k2 + kl + l2

3
; k 2 N� ; l 2 N�

)

:



Application to the nonlinear system

Theorem (L. Rosier (1997))

For everyT > 0, the KdV control system is locally controllable in timeT if
L 62 N:



A second KdV control system

(1)
�

yt + yx + yxxx + yyx = 0 ; t 2 (0; T); x 2 (0; L );
y(t; 0) = u(t); y(t; L ) = 0 ; yx (t; L ) = 0 ; t 2 (0; T):

For everyL > 0, the control system (1) is locally null controllable in small
time: L. Rosier (2004).

Theorem (E. Cerpa and JMC (2013))

For every� > 0, there existC > 0, r > 0 and a feedback lawy 7! u(y)
such that, for this feedback law,

�
jy(0)jL 2 (0;L ) 6 r

�
)

�
jy(t)jL 2 (0;L ) 6 Ce� �t jy(0)jL 2 (0;L ) ; 8t > 0:

�
(2)



Proof: With M. Krstic's backstepping approach

We look for a transformationy 2 L 2(0; L ) 7! z 2 L 2(0; L ) de�ned by

(1) z(x1) := y(x1) �
Z L

x1

k(x1; x2)y(x2)dx2;

such that the trajectoryy of

(2) yt + yx + yxxx = 0 ; y(t; 0) = u(t); y(t; L ) = 0 ; yx (t; L ) = 0 ;

with the feedback lawu(t) :=
RL

0 k(0; x2)y(t; x 2)dx2 is mapped into the
trajectory z = z(t; x ), solution of the linear system

(3) zt + zx + zxxx + �z = 0 ; z(t; 0) = 0 ; z(t; L ) = 0 ; zx (t; L ) = 0 :

Note that, for (3), one has (just multiply (3) byz and do some integrations
by parts):

(4) jz(t)jL 2 (0;L ) 6 e� �t jz(0)jL 2 (0;L ) ; 8t > 0:



Kernel equation

This property for the transformationy 7! z holds if (and only if)

(1)

8
>>><

>>>:

k111 + k1 + k222 + k2 = � �k; for 0 < x 1 < x 2 < L;
k(x1; L ) = 0 ; in [0; L ];

k(x1; x1) = 0 ; in [0; L ];

k1(x1; x1) =
�
3

(L � x1); in [0; L ]:

with ki := @x i k, kiii := @3
x i x i x i

k. Moreover, ifk is smooth enough
(Lipschitz is su�cient), one can check that the same feedback law provides
for the initial nonlinear KdV control system (local) asymptotic stability
with an exponential decay rate at least equal to� . The proof of the
existence ofk follows related arguments to the ones introduced by D.
Bo²kovi¢, M. Krstic and W. Liu in 2001 for the existence ofk for the heat
equationyt � yxx = 0 .



Estimates on the kernels and controllability

Shengquan Xiang recently proved the following estimates for � > 1

(1) jk� jC0 (T ) 6 e(1+ L )2
p

� and jl � jC0 (T ) 6 e(1+ L )2
p

� :

wherel � is the kernel of the inverse transform. It allowed him to givea
new proof of the null controlloability in small-time and thesmall-time
stabilization thanks to these estimates. One may wonder if one could
replace

p
� by � 1=3 in (1).



Return to the initial KdV control system

(1)
�

yt + yx + yxxx + yyx = 0 ; t 2 (0; T); x 2 (0; L );
y(t; 0) = 0 ; y(t; L ) = 0 ; yx (t; L ) = u(t) t 2 (0; T):

We assume that

(2) L 62 N:=

(

2�

r
k2 + kl + l2

3
; k 2 N� ; l 2 N�

)

:

Then the linearized control system around0 is controllable and the
nonlinear control system is locally controllable in small-time. We are
interested in the rapid exponential stabilization of the nonlinear system.



Rapid exponential stabilization of the initial KdV-control
system

Theorem (JMC and Q. Lü (2013))

Let us assume thatL 62 NFor every� > 0, there existC > 0, r > 0 and a
feedback lawy 7! u(y) such that, for this feedback law,

�
jy(0)jL 2 (0;L ) 6 r

�
)

�
jy(t)jL 2 (0;L ) 6 Ce� �t jy(0)jL 2 (0;L ) ; 8t > 0:

�
(1)



Proof of the rapid exponential stabilizability

Unfortunately the backstepping approach (i.e. Fredholm transformations of
the second kind) is not working. We need to use more general
transformations:y 2 L 2(0; L ) 7! z 2 L 2(0; L ) is now de�ned by

(1) z(x1) := y(x1) �
Z L

0
k(x1; x2)y(x2)dx2:

(Every linear transformationy 2 L 2(0; L ) 7! z 2 L 2(0; L ) can been written
in this form). Again, we want that the trajectoryy of

(2) yt + yx + yxxx = 0 ; y(t; 0) = 0 ; y(t; L ) = 0 ; yx (t; L ) = u(t);

with the feedback lawu(t) :=
RL

0 kx1 (0; x2)y(t; x 2)dx2 is mapped into the
trajectory z = z(t; x ), solution of the linear system

(3) zt + zx + zxxx + �z = 0 ; z(t; 0) = 0 ; z(t; L ) = 0 ; zx (t; L ) = 0 :



Kernel equation

This property for the transformationy 7! z holds if (and only if)

(1)

8
<

:

k111 + k1 + k222 + k2 + �k = �� (x1 � x2); on (0; L )2;
k(x1; 0) = k(x1; L ) = k2(x1; 0) = k2(x1; L ) = 0 on (0; L );
k(0; x2) = k(L; x 2) = 0 on (0; L );

where� (x1 � x2) is the Dirac mass on the diagonal of the square
[0; L ] � [0; L ].
Next step: Prove the existence of a solution to the kernel equation (1).



How to prove the existence ofk

Let us de�ne an unbounded linear operatorA : D (A) � L 2(0; L )
! L 2(0; L ) as follows.

D (A) := f ' ; ' 2 H 3(0; L ); ' (0) = ' (L ) = 0 ; ' x (0) = ' x (L )g;(1)

A' := � ' xxx � ' x :(2)

The operatorA is a skew-adjoint operator and has compact resolvent.
Denote byf i� j gj 2 Z, � j 2 R, the eigenvalues ofA, which are organized in
the following way:

: : : 6 � � 2 6 � � 1 < 0 6 � 0 6 � 1 6 � 2 6 : : : :(3)

Since the control is of dimension 1 and the linearized control system is
controllable, all these eigenvalues are simple. Let us write f ' j gj 2 Z for the
corresponding eigenfunctions withj' j jL 2 (0;L ) = 1 (j 2 Z). It is well known
that f ' j gj 2 Z constitutes an orthonormal basis ofL 2(0; L ).



The idea is to searchk in the following form

(1) k(x1; x2) =
X

j 2 Z

 j (x1)' j (x2):

...
Then prove thaty 2 L 2(0; L ) 7! z 2 L 2(0; L ) de�ned by

(2) z(x1) := y(x1) �
Z L

0
k(x1; x2)y(x2)dx2

is invertible.



A general result in �nite dimension

We consider the following linear control system in �nite dimension

_y = Ay + Bu;(1)

where the state isy 2 Rn and the control isu 2 R. We assume that

(2) the control system (1) is controllable.

Let � 2 R. Let GL(n; R) be the set of invertible elements ofRn� n . We are
looking forT 2 GL(n; R) and K 2 R1� n such that, if y = T z and
u = Kz + v, then (1) is equivalent to

(3) _z = ( A � � Id)z + Bv;

where Id is the identity matrix inRn� n . Clearly, if suchT and K exists for
every� 2 R the control system_y = Ay + Bu satis�es the rapid
exponential stabilization property.



Existence and uniqueness ofT andK

The equivalence between_y = Ay + Bu and _z = ( A � � Id)z + Bv with
y = T z and u = Kz + v holds if and only if

AT + BK = T A � �T;(1)

T B = B:(2)

One has the following theorem.

Proposition (JMC (2015))

If _y = Ay + Bu is controllable, there exists one and only one
(T; K ) 2 GL(n; R) � R1� n such that (1) and (2) hold.
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Boundary conditions

Under�ow (sluice)

u

u

Over�ow (spillway)

u

u



1-D hyperbolic systems

Our hyperbolic control system is

(1) yt + A(y)yx = S(y); (t; x ) 2 [0; T] � [0; L ];

where, at timet 2 [0; T], the state isx 2 [0; L ] 7! y(t; x ) 2 Rn . Let
y� 2 Rn be �xed. Assume that� := A(y� ) hasn distinct real non zero
eigenvalues: after a suitable linear change of variables
� = diag(� 1; : : : ; � k ; � � k+1 ; : : : ; � � n ) with
� � n < : : : < � � k+1 < 0 < � k < : : : < � 1. for somek 2 f 0; � � � ; ng. The
term S(y) is the source term. We assume thatS(y� ) = 0 . In this section
we even assume thatS = 0 . The caseS 6= 0 is considered in the next
section (one speaks in this case of hyperbolic balance laws). Let
m := n � k. For y 2 Rn , let y� 2 Rm and y+ 2 Rn� m be such that

y =
�

y�

y+

�
:

The control is part ofy+ (t; 0) and part ofy� (t; L ).



Boundary conditions

(1)
�

y� (t; 1)
y+ (t; 0)

�
= G

�
y� (t; 0)
y+ (t; 1)

�
; t 2 [0; + 1 );

where

(i) y� 2 Rm and y+ 2 Rn� m are de�ned by

(2) y =
�

y�

y+

�
;

(ii) the mapG : Rn ! Rn is such that

(3)
�

y�
� (1)

y�
+ (0)

�
= G

�
y�

� (0)
y�

+ (1)

�
:

Part of G is �xed, part of G can be chosen in order to achieve the
exponential stability ofy� .
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Gas pipes
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Electrical transmission lines

Transmission line Load

Power
supply

x
0 L

U(t)
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Chromatography



Heat exchangers

T1(t, x )
T2(t, x )

cold
inflow
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heated
outflow
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outflow

x
0



Navigable rivers (see above)



Control for navigable rivers



Control for navigable rivers



Successive pools of a navigable river
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ui +1
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The simplest 1-D hyperbolic system

We consider the simplest hyperbolic equation

(1) yt � �y x = 0 ; x 2 (0; 1);

under the boundary conditions

(2) y(t; 1) = u(t);

where� 2 (0; + 1 ) . The control isu(t) 2 R. The goal is to produce a
feedback lawy 2 L 2(0; L )2 7! u(y) 2 R such that, for the closed-loop
system, one has �nite-time stability in the optimal time, which is

(3) Topt :=
1
�

:

It is very simple: just takingu(y) = 0 solves the problem.



x1

t

(0; 0)



x1

t

(0; 0)

Topt



x1

t

u(y) = 0

(0; 0)

Topt y = 0



A tutorial example showing thatu = 0 is not always the
best choice
We consider the control system

y1
t + � 1y1

x = 0 ; y2
t � � 2y2

x = 0 ; y3
t � � 3y3

x = 0 ; x 2 (0; 1); t > 0;(1)

y1(t; 0) = ay2(t; 0) + by3(t; 0); y2(t; 1) = u1(t); y3(t; 1) = u2(t);(2)

y1(0; x) = y1
0(x); y2(0; x) = y2

0(x); y3(0; x) = y3
0(x);(3)

where, at timet > 0, the control is
(u1(t); u2(t)) tr = ( y2(t; 1); y3(t; 1)) 2 R2 and the state is
y(t; �) = ( y1(t; �); y2(t; �); y3(t; �)) tr 2 L 2(0; 1)3. The real numbersa and b
are given. We assume that

(4) 0 < � 1; 0 < � 2 < � 3:

Let

(5) � i =
1
� i

; i 2 f 1; 2; 3g:



If one uses the controlsu1(t) = u2(t) = 0 , one gets that

(1) y(T1; �) = 0 ;

with

T1 := � 1 + � 2:(2)

Moreover ifa 6= 0 and b = 0 , T1 is optimal: there are initial data such that,
whatever are the controls one cannot reach0 at a time smaller thanT1

(see Li Tatsien's book in 2010 for more general situations).However, as
proved by L. Hu in 2015 (in a more general framework), ifb 6= 0 one can
steer the control system to0 in time

(3) T0 := max f � 1 + � 3; � 2g < T 1:

Let us do it with a feedback law. Note thatu1 = u2 = 0 is not working if
a 6= 0 : in this case whatever is0 < T < T 1 there are initial data such, with
these controls, thaty(T; �) 6= 0 . The idea is that we would like to have

(4) (y1(t; 0) =) ay2(t; 0) + by3(t; 0) = 0 :

as fast as possible. For that, we point out that

(5) ay2(t; 0) + by3(t; 0) = ay2(t � � 3; � 3=�2) + by3(t � � 3; 1):



Hence the idea is to use the feedback law

(1) u1(t) = y2(t; 1) = 0 ; u2(t) = y3(t; 1) = � (a=b)y2(t; � 3=�2):

With this feedback law, one has

y1(t; 0) = 0 ; 8t > � 3;(2)

y1(t; x ) = 0 ; 8t > � 3 + � 1x;(3)

y2(t; x ) = 0 ; if t > � 2 � x� 2;(4)

y3(t; 1) = 0 ; 8t > � 2 � � 3;(5)

y3(t; x ) = 0 ; 8t > � 2 � � 3x:(6)

In particular

(7) y(t; �) = 0 ; 8t > T0:



y2(t; 1) = 0; y3(t; 1) = � (a=b)y2(t; � 3=�2)

x1

t

0

� 3

� 3 + � 1
y1 = 0



y2(t; 1) = 0; y3(t; 1) = � (a=b)y2(t; � 3=�2)

x1

t

0

� 2

y2 = 0



y2(t; 1) = 0; y3(t; 1) = � (a=b)y2(t; � 3=�2)

x1

t

0

� 2 � � 3

� 2

y3 = 0



y2(t; 1) = 0; y3(t; 1) = � (a=b)y2(t; � 3=�2)

x1

t

0

� 2 � � 3

� 2
� 3

� 3 + � 1
y = 0



Comparaison of the two feedback laws

y2(t; 1) = 0 in both cases.

y3(t; 1) = � (a=b)y2(t; � 3=�2)

x1

t

0

� 2 � � 3

� 2
� 3

� 3 + � 1
y = 0

y3(t; 1) = 0

x1

t

0

� 2
� 3

� 2 + � 1
� 3 + � 1

y = 0



The general case

We consider then � n hyperbolic system

yt + � yx = 0 ; t > 0; x 2 (0; 1);(1)

with � = diag(� 1; : : : ; � k ; � � k+1 ; : : : ; � � n ). We assume that
� � n < : : : < � � k+1 < 0 < � k < : : : < � 1. The controls are

(2) u1(t) = yk+1 (t; 1); : : : ; um (t) = yn (t; 1):

with m := n � k. On the boundaryx = 0 the boundary condition is

(3) (y1; : : : ; yk )tr (t; 0) = B (yk+1 ; : : : ; yn )tr (t; 0)

with B 2 Rk� m . Let � i := 1=� i . Let us de�neT0 > 0 by

T0 := max f � 1 + � m+1 ; : : : ; � k + � m+ k ; � k+1 g if m > k;(4)

T0 := max f � k+1 � m + � k+1 ; : : : ; � k + � k+ mg if m < k:(5)



Then one has the following theorem.

Theorem (JMC and Hoai-Minh Nguyen (2018))

Assume that, for every1 6 i 6 minf k; m � 1g, the i � i matrix formed
from the lasti columns and the lasti rows ofB is invertible. Then there
exists a linear feedback which yields the null-controllability at the time T0.
Moreover, for anyT < T 0, there exists an initial datum such that
y(T; �) 6� 0 for every control.

Remark
This result also improves the optimal time for null controllability. The best
prior estimate for the null controllability was the time given by L. Hu
(2015) in the casem > k: T1 := max f � k + � m+1 ; � k+1 g. One always have
T0 6 T1 and this inequality is strict ifk > 1.
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