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The stabilizability problem

We consider the control system ẏ = f(y, u) where y in R
n is the state and

u in R
m is the control. We assume that f(0, 0) = 0.

Problem

Does there exists u : Rn → R
m vanishing at 0 such that 0 ∈ R

n is (locally)
asymptotically stable for ẏ = f(y, u(y))? (If the answer is yes, one says
that the control system is locally asymptotically stabilizable.)

Remark

The map u : y ∈ R
n 7→ R

m is called a feedback (or feedback law). The
dynamical system ẏ = f(y, u(y)) is called the closed loop system.



Regularity of feedback laws

The regularity of y 7→ u(y) is an important point. With u continuous,
asymptotic stability implies the existence of a smooth strict Lyapunov
function and one has robustness with respect to small actuator errors as
well as small measurement errors.
If u is discontinuous, one needs to define the notion of solution of the
closed loop system ẏ = f(y, u(y)) and study carefully the robustness of the
closed loop system.



Controllability

Let T > 0. Given two states y0 and y1, does there exist a control
t ∈ [0, T ] 7→ u(t) which steers the control system from y0 to y1, i.e. such
that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒
(

y(T ) = y1
)

?(1)

If the answer is yes, the control system is said to be controllable on [0, T ].



Controllability of linear control systems

The control system is

(1) ẏ = Ay +Bu, y ∈ R
n, u ∈ R

m,

where A ∈ R
n×n and B ∈ R

n×m.

Theorem (Kalman’s rank condition (1960))

The linear control system ẏ = Ay +Bu is controllable on [0, T ] if and only
if

(2) Span {AiBu;u ∈ R
m, i ∈ {0, 1, . . . , n− 1}} = R

n.



Small-time local controllability

We assume that (ye, ue) is an equilibrium, i.e., f(ye, ue) = 0. Many
possible choices for natural definitions of local controllability. The most
popular one is Small-Time Local Controllability (STLC): the state
remains close to ye, the control remains close to ue and the time is small.
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The linear test

We consider the control system ẏ = f(y, u) where the state is y ∈ R
n and

the control is u ∈ R
m. Let us assume that f(ye, ue) = 0. We are

interested in the small-time local controllability of ẏ = f(y, u) around
(ye, ue). L. Nirenberg, besides to be a great mathematician, always gave
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is
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The linear test

We consider the control system ẏ = f(y, u) where the state is y ∈ R
n and

the control is u ∈ R
m. Let us assume that f(ye, ue) = 0. We are

interested in the small-time local controllability of ẏ = f(y, u) around
(ye, ue). L. Nirenberg, besides to be a great mathematician, always gave
great advices when you have no more idea to solve a given problem. I was
told that one of his famous advices is

Have you tried to linearize?

We follow Nirenberg’s advice. The linearized control system at (ye, ue) is
the linear control system ẏ = Ay +Bu with

A :=
∂f

∂y
(ye, ue), B :=

∂f

∂u
(ye, ue).(1)

If the linearized control system ẏ = Ay +Bu is controllable, then
ẏ = f(y, u) is small-time locally controllable at (ye, ue).



Stabilizability of linear controllable systems

Notations. For a matrix M ∈ R
n×n, PM denotes the characteristic

polynomial of M : PM (z) := det (zI −M).
Let us denote by Pn the set of polynomials of degree n in z such that the
coefficients are all real numbers and such that the coefficient of zn is 1.
One has the following theorem.

Theorem (Pole shifting theorem, M. Wonham (1967))

Let us assume that the linear control system ẏ = Ay +Bu is controllable.
Then

(1)
{

PA+BK ; K ∈ R
m×n

}

= Pn.

Corollary

If the linear control system ẏ = Ay +Bu is controllable, there exists a
linear feedback y 7→ u(y) = Ky such that 0 ∈ R

n is (globally)
asymptotically stable for the closed loop system ẏ = Ay +Bu(y).



Application to nonlinear controllable systems

We assume that f(0, 0) = 0. Let us consider the linearized control system
ẏ = Ay +Bu of ẏ = f(y, u) at (0, 0) ∈ R

n × R
m:

(1) A :=
∂f

∂y
(0, 0), B :=

∂f

∂u
(0, 0).

Let us assume that the linearized control system ẏ = Ay +Bu is
controllable. Then, by the pole-shifting theorem, there exists K ∈ R

m×n

such that σ(A+BK) = {−1}. Let us consider the feedback u(y) = Ky.
Then, if X(y) := f(y, u(y)), X ′(0) = A+BK. Hence, by Lyapunov’s first
theorem, 0 ∈ R

n is locally asymptotically stable for the closed loop system
ẏ = f(y, u(y)).
In conclusion, if the linearized control system is controllable, then

The control system ẏ = f(y, u) is small-time locally controllable at
(0, 0).

The control system ẏ = f(y, u) is locally asymptotically stabilizable
(at the equilibrium (0, 0)).



A first notion of rapid stabilization: Rapid exponential

stabilization

We consider the control system

(1) ẏ = f(y, u),

where the state is y ∈ R
n and the control is u ∈ R

m. We assume that
f(0, 0) = 0. A first possible notion for rapid exponential is the rapid
exponential stabilization. It is the following property: For every ν > 0,
there exist a feedback law y ∈ R

n 7→ u(y) ∈ R
m, C > 0 and r > 0 such

that, for every solution of the closed loop system ẏ = f(y, u(y)) such that
|y(0)| 6 r, one has

(2) |y(t)| 6 Ce−νt|y(0)|, ∀t > 0?



Rapid exponential stabilization and the linear test

One has the following theorem.

Theorem (Corollary of the Pole shifting theorem)

If the linear control system ẏ = Ay +Bu is controllable, the rapid
exponential stabilization property holds for this control system. If the
linearized control control system at (0, 0) ∈ R

n × R
m of ẏ = f(y, u) is

controllable, then ẏ = f(y, u) is rapidly exponentially stabilizable.



An example: Cart-inverted pendulum
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Cart-inverted pendulum: The equations

Let

y1 := ξ, y2 := θ, y3 := ξ̇, y4 := θ̇, u := F,(1)

The dynamics of the cart-inverted pendulum system is ẏ = f(y, u), with
y = (y1, y2, y3, y4)

tr and

f :=
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Stabilization of the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control system around
(0, 0) ∈ R

4 × R is ẏ = Ay +Bu with

A =













0 0 1 0
0 0 0 1

0 −mg
M

0 0

0
(M +m)g

Ml
0 0













, B =
1

Ml









0
0
l
−1









.(1)

One easily checks that this linearized control system satisfies the Kalman
rank condition and therefore is controllable. Hence the cart-inverted
pendulum is small-time locally controllable at (0, 0) ∈ R

4 × R and is
rapidly exponentially stabilizable (at the equilibrium (0, 0)).



Necessity to remove the C1-smoothness of the feedback laws

Let us consider the control system

(1) ẏ1 = y1 − y32 , ẏ2 = u,

where the state is (y1, y2)
tr ∈ R

2 and the control is u ∈ R. The linearized
control system of (1) at (0, 0) ∈ R

2 × R is

(2) ẏ1 = y1, ẏ2 = u,

which is not controllable. However the nonlinear control system (1) is
small-time locally controllable around (0, 0) ∈ R

2 × R. This can been seen
by the return method, i.e. constructs small (but not 0) trajectories going
from 0 to 0 and having a linearized control system which is controllable.
This can been also checked by using criteria relying on iterated Lie brackets.



But there is no u ∈ C1(R2,R) such that 0 ∈ R
2 is asymptotically stable for

the closed loop system ẏ = X(y)

(1) X1(y) = y1 − y32, X2(y) = u(y).

Indeed, one has

(2) X ′(0) =

(

1 0
k1 k2

)

and we cannot have both trace X ′(0) 6 0 and det X ′(0) > 0. However, as
proved by Dayawansa and Martin (1989), there are continuous feedback
laws u such that 0 ∈ R

2 is asymptotically stable for ẏ1 = y1 − y32 ,
ẏ2 = u(y). See also below.



A simple example

Since we have to relax the regularity on the feedback laws, one can be
more ambitious and look for finite-time stability instead of asymptotic
stability as shows the following simple example. One considers the simplest
control system

(1) ẏ = u,

where the state is y ∈ R and the control is u ∈ R. We consider the
feedback law u(y) := −(3/2)|y|1/3sign(y). The solution to the Cauchy
problem ẏ = −(3/2)|y|1/3sign(y), y(0) = y0 is

y(t) = ||y0|2/3 − t|3/2sign(|y0|2/3 − t) if t ∈ [0, |y0|2/3],(2)

y(t) = 0 if t > |y0|2/3.(3)

This feedback law leads to finite-time stability.



Finite-time stability

Let X ∈ C0(Rn;Rn) and ye ∈ R
n be such that X(ye) = 0. One adopts

the following definition

Definition (Finite-time stable)

One says that ye is finite-time stable for ẏ = X(y) if it is stable and there
exists η > 0 and τ > 0 such that

(1) (ẏ = X(y) and |y(0) − ye| < η) ⇒ (y(t) = 0, ∀t > τ)



Finite-time stabilization

Let us now consider the control system ẏ = f(y, u) with
f : Rn × R

m → R
n of class C1 and let (ye, ue) ∈ R

n × R
m be an

equilibrium of ẏ = f(y, u), i.e. f(ye, ue) = 0.

Definition (Finite-time stabilizable)

One says that (ye, ue) is finite-time stabilizable for ẏ = f(y, u) if there
exists u ∈ C0(Rn,Rm) such that u(ye) = ue and ye is finite-time stable for
ẏ = f(y, u(y)).



The case of linear systems

Let us consider finite dimensional control systems of the following form

ẏ = Ay +Bu(1)

where A ∈ R
n×n, B ∈ R

n×m, the state is y ∈ R
n and the control is

u ∈ R
m.

Theorem (JMC-L. Praly (1991))

The control system (1) is finite-time stabilizable if and only if it is
controllable.
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An example of finite-time stabilization

(1) ẏ1 = y2, ẏ2 = u,

where the state is (y1, y2)
tr ∈ R

2 and the control is u ∈ R.
We use another very important Nirenberg’s advice

Have you tried the dimension 2?

We go one step further and try the dimension 1. Then the 1-dimensional
linear control system is

(2) ẏ1 = y2,

where the state is y1 ∈ R and the control is y2 ∈ R.
One then notes that, for α ∈ (0, 1), the feedback law

(3) ȳ2(y1) := −sign(y1)|y1|α := −{y1}α

finite-time stabilizes the control system (2). See above for α = 1/3.



The standard backstepping approach is a method to stabilize the control
system

(1) ẏ1 = f(y1, y2), ẏ2 = u2,

where the state is (ytr
1 , y

tr
2 )

tr ∈ R
n = R

n1+n2 , y1 ∈ R
n1 , y2 ∈ R

n2 , and the
control is u ∈ R

n2 if one knows how to stabilize the control system

(2) ẏ1 = f(y1, y2),

where the state is y1 ∈ R
n1 and the control is y2 ∈ R

n2 by means of a
feedback law of class C1. Let us recall the method. Just to simplify the
notation we assume that n2 = 1 and that (ye, ue) = (0, 0). Let
ȳ2 : R

n2 → R, y1 7→ ȳ2 be of class C1, vanishing at 0 ∈ R
n1 and such that

0 is asymptotically for the closed-loop system ẏ = f(y1, ȳ2(y1)). Let
V ∈ C∞(Rn1), y1 7→ L(y1), be a Lyapunov function of ẏ1 = f(y1, ȳ2(y1)).
We consider the control Lyapunov function for the control system (1)

(3) V (y1, y2) := L(y1) +
1

2
(y2 − ȳ2(y1))

2

The natural idea behind this definition is to penalize the fact that
y2 6= ȳ2(y1).



Along the trajectories of ẏ1 = f(y1, y2), ẏ2 = u2, one has

V̇ = (L′(y1)− (y2 − ȳ2(y1))ȳ
′
2(y1)) f(y1, y2) + (y2 − ȳ2(y1))u

= L′(y1)f(y1, ȳ2(y1))

+(y2 − ȳ2(y1))
(

L′(y1)
f(y1,y2)−f(y1,ȳ2(y1))

y2−ȳ2(y1)
− ȳ′2(y1)f(y1, y2) + u

)

.

Hence the feedback law

u(y1, y2) := ȳ′2(y1)f(y1, y2)−L′(y1)
f(y1, y2)− f(y1, ȳ2(y1))

y2 − ȳ2(y1)
−(y2 − ȳ2(y1))

leads to

V̇ = L′(y1)f(y1, ȳ2(y1))−(y2 − ȳ2(y1))
2 < 0 for |y1|+|y2| small but not 0.

Hence this feedback law asymptotically stabilizes ẏ1 = f(y1, y2), ẏ2 = u2,



Let us follow this method for ẏ1 = y2, ẏ2 = u2, ȳ2(y1) = −{y1}α. One
takes L(y1) = y21/2 and

(1) V (y1, y2) =
1

2
y21 + ϕ(y1, y2) :=

1

2
y21 +

1

2
(y2 + {y1}α)2,

the idea of ϕ being, again, to penalize the fact that y2 6= −{y1}α.
Unfortunately this V is not of class C1 on the full line y1 = 0. There are
other ϕ which are more regular and which also penalizes the fact that
y2 6= −{y1}α. For example,

(2)
ϕ(y1, y2) =

∫ y2
−{y1}α

(

{s}1/α − y1
)

ds

= α
1+α |y2|(1+α)/α + y1y2 +

1
1+α |y1|(1+α),

which is of class C1 and satisfies ϕ(y1, y2) > 0 with equality if and only if
y2 = −{y1}α. For homogeneity issues, one then replaces (1) by

(3)
V (y1, y2) = α

1+α |y1|1+α + ϕ(y1, y2)

= α
1+α |y2|(1+α)/α + y1y2 + |y1|1+α.



With this new V one has, along the trajectories of ẏ1 = y2, ẏ2 = u,

(1) V̇ =
(

{y2}(1/α) + y1

)

u+ y22 + (1 + α){y1}αy2.

Note that, if y2 + {y1}α = 0, then

(2) V̇ = −α|y1|2α 6 0.

Hence, by homogeneity argument, one sees that, if

(3) u := −k{y2 + {y1}α}2α−1,

then, if k > 0 is large enough, there exists δ > 0,

(4) V̇ 6 −δV 2α/(1+α).

Note that u defined by (3) is continuous and vanishes at 0 if 2α > 1.
Hence, taking α ∈ (1/2, 1), the u defined by (3) leads to stabilization in
finite time for ẏ1 = y2, ẏ2 = u provided that k > 0 is large enough.



The general case ẏ1 = y2, ẏ2 = y3... ẏn−1 = yn, ẏn = u

We consider the control linear control system

(1) ẏ1 = y2, ẏ2 = y3, . . . , ẏn−1 = yn, ẏn = u,

where the state is (y1, y2, . . . , yn−1, yn)
tr ∈ R

n and the control is u ∈ R.
Adapting the above construction and taking α ∈ ((n− 1)/n, 1) one can
get feedback laws leading to finite-time stabilization. See JMC and L. Praly
(1992), P. Bhat and D. Bernstein (1998, 2002), Y. Hong (2002), Y. Hong,
Y. Xu, and J. Huang (2002), Y. Hong and Z.-P. Jiang (2006), E. Moulay
and W. Perruquetti (2006), E. Bernuau, W. Perruquetti, D. Efimov, and E.
Moulay (2015), B. d’Andréa-Novel, JMC, and W. Perruquetti (2020).
Note that it follows from this result that any linear controllable system in
finite dimension are finite-time stabilizable by means of stationary feedback
laws. The finite-time stabilizability of nonlinear systems having having a
controllable linearized control system at (0, 0) ∈ R

n × R
m follows from

homogeneity arguments (one uses here L. Rosier’s result on the existence
of homogeneous Lyapunov for homogeneous vector fields).



Obstruction to the stabilizability

Theorem (R. Brockett (1983))

If the control system ẏ = f(y, u) is locally asymptotically stabilizable then

(B) the image by f of every neighborhood of (0, 0) ∈ R
n × R

m is a
neighborhood of 0 ∈ R

n.
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Equations for the slider

The slider is actuated by two propellers producing forces FL and FR. The
sum of these two forces is directly linked to the acceleration of the vehicle,
whereas the difference acts on the angular dynamics. Let us denote
τ1 = FL + FR and τ2 = FR − FL, the dynamics can be written:

(1)







mξ̈1 = cos(ψ)τ1,

mξ̈2 = sin(ψ)τ1,

Iψ̈ = τ2,

where m is the slider mass and I is the moment of inertia of the slider
about its center of mass.



Equations for the slider in the form ẏ = f(y, u)

Let

{

y1 = ξ1, y2 = ξ̇1, y3 = ξ2, y4 = ξ̇2,

y5 = ψ, y6 = ψ̇, u1 =
τ1
m
, u2 =

τ2
I
.

(1)

Then the dynamics of the slider can be written in the form ẏ = f(y, u) with

(2) f(y, u) := (y2, u1 cos(y5), y4, u1 sin(y5), y6, u2)
tr.



Slider: Controllability and Brockett’s condition

One has the following theorem.

Theorem

The slider control system is small-time locally controllable at the
equilibrium (0, 0) ∈ R

6 × R
2 but does not satisfy the Brockett condition.

For the Brockett condition, consider the equation

(1) (y2, u1 cos(y5), y4, u1 sin(y5), y6, u2)
tr = (0, 0, 0, δ, 0, 0)tr .



A solution: Time-varying feedback laws

Instead of u(y), use u(t, y). Note that asymptotic stability for time-varying
feedback laws is also robust (there exists again a strict Lyapunov function).
First use of time-varying feedback laws:

n = 1: E. Sontag and H. Sussmann (1980).

For a driftless control system with n = 3 and m = 2: C. Samson
(1992).



Continuous reachability

In order to deal with systems for which the linearized system is not
controllable, we use the following definition.

Definition

The origin (of Rn) is locally continuously reachable in small time for the
control system ẏ = f(y, u) if, for every positive real number T , there exist
a positive real number ε and u : B̄ε → L1 ((0, T );Rm) such that

u ∈ C0
(

B̄ε;L
1 ((0, T );Rm)

)

(1)

Sup{|u(a)(t)|; t ∈ (0, T )} → 0 as a→ 0,(2)

((ẏ = f(y, u(a)(t)), y(0) = a) ⇒ (y(T ) = 0)),∀a ∈ B̄ε.(3)



Continuous reachability

In order to deal with systems for which the linearized system is not
controllable, we use the following definition.

Definition

The origin (of Rn) is locally continuously reachable in small time for the
control system ẏ = f(y, u) if, for every positive real number T , there exist
a positive real number ε and u : B̄ε → L1 ((0, T );Rm) such that

u ∈ C0
(

B̄ε;L
1 ((0, T );Rm)

)

(1)

Sup{|u(a)(t)|; t ∈ (0, T )} → 0 as a→ 0,(2)

((ẏ = f(y, u(a)(t)), y(0) = a) ⇒ (y(T ) = 0)),∀a ∈ B̄ε.(3)

Open problem: Small-time local controllability and continuous reachability

Assume that f is analytic and that ẏ = f(y, u) is small-time locally con-
trollable at (0, 0) ∈ R

n × R
m. Is the origin (of R

n) locally continuously
reachable in small time for the control system ẏ = f(y, u)?



Local continuous reachability and finite-time stabilization

Theorem (JMC (1995))

Assume f is analytic, that 0 ∈ R
n is locally continuously reachable in small

time for the control system ẏ = f(y, u), and that n 6∈ {2, 3}. Then, for
every positive real number T , there exist ε in (0,+∞) and u in
C0(R× R

n;Rm), of class C∞ on R× (Rn \ {0}), T -periodic with respect
to time, vanishing on R× {0} and such that, for every s ∈ R,

((ẏ = f(y, u(t, y)) and y(s) = 0) ⇒ (y(τ) = 0, ∀τ > s)) ,(1)

(ẏ = f(y, u(t, y)) and |y(s)| 6 ε) ⇒ (y(τ) = 0, ∀τ > s+ T )) .(2)

In particular 0 is finite-time stable for the closed-loop system
ẏ = f(y, u(t, y)).



An example: The slider
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Let us recall that the dynamics of the slider can be written in the form
ẏ = f(y, u) with

(1) f(y, u) := (y2, u1 cos(y5), y4, u1 sin(y5), y6, u2)
tr.

As mentioned above, the slider does not satisfies the Brockett condition at
the equilibrium (0, 0) ∈ R

6 × R
2 and therefore is not locally asymptotically

stabilizable by means of stationary feedback laws (i.e. feedback laws u(y)).
However it follows from our result on the stabilizability in small time that
the following proposition holds.

Proposition

The slider is asymptotically and even in small time stabilizable by means of
periodic time-varying feedback laws (i.e. feedback laws u(t, y) which are
periodic with respect to time).

Construction of a time varying feedback stabilizing the slider in small time
(B. d’Andréa-Novel, JMC, and W. Perruquetti (2019)).
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The problem

We consider the heat control system

(1) yt − yxx = 0, y(t, 0) = 0, y(t, 1) = u(t), t ∈ [0,+∞), x ∈ [0, 1],

where, at time t ∈ [0,+∞), the state is y(t) ∈ L2(0, 1),
x ∈ (0, 1) 7→ y(t)(x) := y(t, x) and the control is u(t) ∈ R. We are
interested in

1 The rapid exponential stabilization of (1),

2 The finite time stabilization of (1).

Note that the linear control system (1) is known to be null controllable.



Concerning the rapid stabilization we want to prove the following theorem

Theorem

Let λ > 0. There a feedback law uλ : L2(0, 1) → R such that there exists
C(λ) > 0 such that, for every solution of

(2) yt−yxx = 0, y(t, 0) = 0, y(t, 1) = uλ(y(t, ·)), t ∈ [0,+∞), x ∈ [0, 1],

one has

(3) |y(t, ·)|L2 6 C(λ)e−λt|y(0, ·)|L2 , ∀t > 0.

This theorem is a simple corollary of a pole shifting theorem due to D.
Russell (1976). Let us give a proof due to D. Bošković, M. Krstic and W.
Liu (2001). It relies on backstepping.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize finite
dimensional control system of the form ẋ = f(x, y), ẏ = u. See above.
2. First application to PDE: JMC and B. d’Andréa-Novel (1998).
3. This method has been used on the discretization of partial differential
equations by D. Bošković, A. Balogh and M. Krstic in 2003.
4. A key modification of the method by using a Volterra transformation of
the second kind is introduced by D. Bošković, M. Krstic and W. Liu in
2001.
5. For a survey on this method with Volterra transformations of the second
kind, see the book by M. Krstic and A. Smyshlyaevin 2008.



For more details

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 p. Pdf
file freely available from my web
page.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilize finite
dimensional control system of the form ẋ = f(x, y), ẏ = u. See above.
2. First application to PDE: JMC and B. d’Andréa-Novel (1998).
3. This method has been used on the discretization of partial differential
equations by D. Bošković, A. Balogh and M. Krstic in 2003.
4. A key modification of the method is introduced by D. Bošković, M.
Krstic and W. Liu in 2001: They saw that at the continuous level, the
backstepping method corresponds to a Volterra transformation of the
second kind for the transformation T and well chosen target systems.
5. For a survey on this method with Volterra transformations of the second
kind, see the book by M. Krstic and A. Smyshlyaev in 2008.



Backstepping and the 1D heat equation

We consider the heat control system

(1) yt − yxx = 0, y(t, 0) = 0, y(t, 1) = u(t), t ∈ [0,+∞), x ∈ [0, 1],

where, at time t ∈ [0,+∞), the state is y(t) ∈ L2(0, 1),
x ∈ (0, 1) 7→ y(t)(x) := y(t, x) and the control is u(t) ∈ R. We are
interested in the rapid exponential stabilization of this linear (controllable)
control system. Let λ ∈ R. Consider the following controlled system
(called the target system)

(2) zt − zxx = −λz, z(t, 0) = 0, z(t, 1) = v(t), t ∈ [0,+∞), x ∈ [0, 1],

where, at time t ∈ [0,+∞), the state is z(t) ∈ L2(0, 1),
x ∈ (0, 1) 7→ z(t)(x) := z(t, x) and the control is v(t) ∈ R. Note that for
(2) with z = 0, one has

(3) |z(t)|2L 6 e−λt|z(0)|2L,∀t > 0.



D. Bošković, M. Krstic and W. Liu in 2001 looks for maps
T−1 : L2(0, 1) → L2(0, 1) y 7→ z and K : L2(0, 1) → R, z 7→ Kz such
that the target system (2) is transformed into the initial system (1) if
u = Kz + v. They choose to look for T−1 in the class of Volterra
transform of the second kind:

(1) z(x1) := y(x1)−
∫ x1

0
k(x1, x2)y(x2)dx2.

One of the advantages of the Volterra transforms of the second kind is that
there are invertible (if k is smooth enough, for example in
L2((0, 1) × (0, 1))). Note that, once T is defined, we must take

(2) Kz =

∫ 1

0
k(1, x2)y(x2)dx2.

Moreover, the feedback law u(y) :=
∫ 1
0 k(1, s)y(s)ds leads for z to the

closed loop system

(3) zt − zxx = −λz, z(t, 0) = z(t, 1) = 0,

which insures exponential stability for z with an exponential decay rate (in
L2(0, 1)) at least equal to λ.



Since y ∈ L2(0, 1) → z ∈ L2(0, 1) is an isomorphism the same holds for
the closed loop system

(1) yt − yxx = 0, y(t, 0) = 0, y(t, 1) =

∫ 1

0
k(1, s)y(s)ds,

which shows the rapid exponential stabilizability of the initial heat control
system (with a method to compute a feedback law leading to an
exponential stability with an exponential decay rate as large as we want).



Kernel equation

Straightforward computations show that the y system is equivalent to the z
system if and only if k satisfies the following equation, called the kernel
equation,

(1)











k11 − k22 = λk, 0 < x2 < x1 < 1,
k(x1, 0) = 0, 0 < x1 < 1,

k(x, x) = −λ
2
x, 0 < x < 1,

kii := ∂2xixi
k, i ∈ {1, 2}.



A method to prove the existence of k

D. Bošković, M. Krstic and W. Liu in 2001 proposed the following iterative
scheme. Let us make the following change of variables
t = x1 − x2, s = x1 + x2 and define G(s, t) := k(x1, x2) on
T0 := {(s, t); t ∈ [0, 1], s ∈ [t, 2− t]}. Then k satisfies the kernel equation
if and only if

(1)



















Gst = −λ
4
G, in T0,

G(s, s) = 0, in [1, 2],

G(s, 0) =
λ

4
s, in [0, 2].

One integrates the first equation of (1) with respect to t from 0 to t. One
gets, using also the third equality of (1),

(2) Gs(s, t) = Gs(s, 0) −
λ

4

∫ t

0
G(s, t1)dt1 =

λ

4
− λ

4

∫ t

0
G(s, t1)dt1.

We integrate this equation with respect to s from t to s. Using also the
second equation of (1), we get



(1) G(s, t) =
λ

4
(s − t)− λ

4

∫ s

t

∫ t

0
G(s1, t1)dt1ds1

One defines inductively Gn : T0 → R, n ∈ N \ {0}, by requiring

G1(s, t) = 0,(2)

Gn+1(s, t) =
λ

4
(s− t)− λ

4

∫ s

t

∫ t

0
Gn(s1, t1)dt1ds1(3)

One gets, by induction on n, that

(4) Gn(s, t) = −
n
∑

k=1

(s− t)sk−1tk−1(−λ)k
(k − 1)!k!4k

,

a sum which converges as n→ +∞.



Formulas for G and k

Let

(1) I(x) :=
+∞
∑

k=1

(−x)2k−1

(k − 1)!k!22k−1
.

Then

G(s, t) =
λ

2
(s− t)

I(
√
λst)√
λst

,(2)

k(x1, x2) =
λ

2
x2
I(
√

λ(x21 − x22))
√

λ(x21 − x22)
.(3)



How to recover the null controllability with the backstepping

method (JMC and H.-M. Nguyen (2015))

From now on we assume that λ > 1. Looking at the explicit expression of
the kernel k, one sees that

(1) |k|H1(∆) 6 CeC
√
λ,

where

(2) ∆ := {(x1, x2); 0 < x2 < x1 < 1}.
The inverse transform of

(3) z(x1) := y(x1)−
∫ x1

0
k(x1, x2)y(x2)dx2,

has the form

(4) y(x1) := z(x1)−
∫ x1

0
l(x1, x2)z(x2)dx2.

The exact expression of l shows that

(5) |l|H1(∆) 6 Cλ.



So if we apply the backstepping for λ and during the interval of time [0, τ ],
we have

(1) |y(τ)|L2 6 Cλ|z(τ)|L2 6 Cλe−λτ |z(0)|L2 6 Cλe−λτ eC
√
λ|y(0)|L2 .

Similar estimates holds for the control y(t, 1). Let T > 0, and for
n ∈ N \ {0, 1}, let tn = T (1− 1/n2) and λn = n8. Let t1 := 0 and
λ1 := 1. During the interval [tn, tn+1) we apply the feedback law coming
from the backstepping with λ := λn

Proposition (H.-M. Nguyen and JMC (2015))

lim
t→T−

|y(t, ·)|L2 = 0,(2)

lim
t→T−

u(t) = 0.(3)

Hence this is a new method to prove the null controllability of the heat
equation in small time.



The estimates

|k|H1(∆) 6 CeC
√
λ,(1)

|l|H1(∆) 6 Cλ.(2)

are crucial for this method. Note that one can find related estimates in G.
Lebeau and L. Robbiano (1995) (in every space dimension).
Let us now turn to the case of the following more general 1-D parabolic
equations

(3)

{

yt(t, x) = (a(x)yx(t, x))x + c(x)y(t, x) in (τ1, τ2)× [0, 1],
y(t, 0) = 0, y(t, 1) = u(t) for t ∈ (τ1, τ2).

The target system is then

(4)

{

zt(t, x) = (a(x)zx(t, x))x + c(x)z(t, x) − λz in (τ1, τ2)× [0, 1],
z(t, 0) = 0, z(t, 1) = v(t) for t ∈ (τ1, τ2).

We assume that a ∈ H2(0, 1), a > 0 in [0, 1], and that c ∈ H1(0, 1).



Proposition (H.-M. Nguyen and JMC (2015))

There exists a kernel k which allows to transform the initial y system into
the z system and one has, for λ ∈ [1,+∞),

|k|H1(∆) 6 CeC
√
λ,(1)

|l|H1(∆) 6 Cλ.(2)

Remark

Our proof is different from the iterative scheme mentioned above. We
interpret the kernel equation on k (and l) as a wave equation defined in
[0, 1]2. Estimates (1) and (2) follow from an energy type estimate for the
wave equation which is somehow nonstandard in the sense that the energy
not only contains the gradient of the solutions but also the solutions; the
standard energy estimate only gives the exponent λ in (1).



Small-time stabilization

However the above strategy does not seem lead to stabilization in finite
time. This is due to the fact that u(t, y) is small along the trajectories
starting from the time 0 but might be quite large for a given y and t→ T−.
In fact 0 ∈ L2(0, 1) is (probably) not stable with this feedback law.



We look for time-varying feedback laws (t, y) ∈ R×L2(0, 1) 7→ u(t, y) ∈ R

satisfying the following three properties.

(P1). The feedback law u is T -periodic with respect to time:

(1) u(t, y) = u(t+ T, y) for every (t, y) ∈ R× L2(0, 1).

(P2). There exists a strictly increasing sequence (tn)n∈N of real numbers
such that

t0 = 0,(2)

lim
n→+∞

tn = T,(3)

u is of class C1 in [tn, tn+1)× L2(0, 1) for every n ∈ N.(4)

(P3). The map u vanishes on R× {0} and there exists a continuous
function M : [0, T ) → [0,+∞) such that

(5) |u(t, y2)− u(t, y1)| 6M(t)|y2 − y1|L2

∀ (t, y1, y2) ∈ [0, T ) × L2(0, 1) × L2(0, 1).



Proposition

Assume that F satisfies Properties (P1), (P2), and (P3). Let 0 6 s < T .
Then, for every y0 ∈ L2(0, 1), there exists a unique solution
y ∈ C0

(

[s, T );L2(0, 1)
)

of

(1)















yt(t, x) = yxx(t, x) for (t, x) ∈ (s, τ)× [0, 1],

y(t, 0) = 0, y(t, 1) = u(t, y(t, ·)) for t ∈ (s, τ),

y(s, ·) = y0 for x ∈ [0, 1].



Proposition

Assume that F satisfies Properties (P1), (P2), and (P3) and that there
exist C > 0 and T̄ ∈ (0, T ) such that

|u(t, y)| 6 C|y|1/2
L2 , ∀ (t, y) ∈ [T̄ , T )× L2(0, 1).(P4)

Then, for every s ∈ R and for every y0 ∈ L2(0, 1), there exists a unique
solution y ∈ C0

(

[s,+∞);L2(0, 1)
)

of

(1)















yt(t, x) = yxx(t, x) for (t, x) ∈ (s,+∞)× [0, 1],

y(t, 0) = 0, y(t, 1) = u(t, y(t, ·)) for t ∈ (s,+∞),

y(s, ·) = y0 for x ∈ [0, 1].

Notation φ(t, s, y0) := y(t, ·).



Theorem (JMC and H.-M. Nguyen (2015))

Let T > 0 and Γ > 0. There exists a time-varying feedback laws
(t, y) ∈ R× L2(0, 1) 7→ u(t, y) ∈ R satisfying Properties (P1), (P2), (P3)
and (P4) such that

(1) Φ(t+ T, t, y0) = 0 for every (t, y0) ∈ R× L2(0, 1)

such that |y0|L2 6 Γ

and such that the following uniform stability condition

(2)

{

∀ ε > 0, ∃η > 0 such that, ∀ t′ ∈ R, ∀ t ∈ [t′,+∞),

and ∀ y0 ∈ L2(0, 1),
(

|y0|L2 6 η
)

⇒
(

|Φ(t, t′, y0)| 6 ε
)

holds. In particular our heat equation is small-time stabilizable by means of
time-varying feedback laws.



Open problem

Is it possible to stabilize in finite time (or even in small time) the heat
equation by means of stationary feedback laws?

May be one can try to use the kernel kλ(y) instead of the kernel kλ(t) with
λ(y) converging to +∞ as y → 0.
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A KdV control system

yt + yx + yxxx + yyx = 0, t ∈ [0, T ], x ∈ [0, L],(1)

y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ].(2)

where, at time t ∈ [0, T ], the control is u ∈ R and the state is
y(t, ·) ∈ L2(0, L).



Controllability of the linearized control system

Theorem (L. Rosier (1997))

For every T > 0, the linearized control system is controllable in time T (in
L2(0, L)) if and only

L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗
}

.



Application to the nonlinear system

Theorem (L. Rosier (1997))

For every T > 0, the KdV control system is locally controllable in time T if
L 6∈ N .



A second KdV control system

(1)

{

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = u(t), y(t, L) = 0, yx(t, L) = 0, t ∈ (0, T ).

For every L > 0, the control system (1) is locally null controllable in small
time: L. Rosier (2004).

Theorem (E. Cerpa and JMC (2013))

For every λ > 0, there exist C > 0, r > 0 and a feedback law y 7→ u(y)
such that, for this feedback law,

(

|y(0)|L2(0,L) 6 r
)

⇒
(

|y(t)|L2(0,L) 6 Ce−λt|y(0)|L2(0,L), ∀t > 0.
)

(2)



Proof: With M. Krstic’s backstepping approach

We look for a transformation y ∈ L2(0, L) 7→ z ∈ L2(0, L) defined by

(1) z(x1) := y(x1)−
∫ L

x1

k(x1, x2)y(x2)dx2,

such that the trajectory y of

(2) yt + yx + yxxx = 0, y(t, 0) = u(t), y(t, L) = 0, yx(t, L) = 0,

with the feedback law u(t) :=
∫ L
0 k(0, x2)y(t, x2)dx2 is mapped into the

trajectory z = z(t, x), solution of the linear system

(3) zt + zx + zxxx + λz = 0, z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0.

Note that, for (3), one has (just multiply (3) by z and do some integrations
by parts):

(4) |z(t)|L2(0,L) 6 e−λt|z(0)|L2(0,L), ∀t > 0.



Kernel equation

This property for the transformation y 7→ z holds if (and only if)

(1)



















k111 + k1 + k222 + k2 = −λk, for 0 < x1 < x2 < L,
k(x1, L) = 0, in [0, L],
k(x1, x1) = 0, in [0, L],

k1(x1, x1) =
λ

3
(L− x1), in [0, L].

with ki := ∂xi
k, kiii := ∂3xixixi

k. Moreover, if k is smooth enough
(Lipschitz is sufficient), one can check that the same feedback law provides
for the initial nonlinear KdV control system (local) asymptotic stability
with an exponential decay rate at least equal to λ. The proof of the
existence of k follows related arguments to the ones introduced by D.
Bošković, M. Krstic and W. Liu in 2001 for the existence of k for the heat
equation yt − yxx = 0.



Estimates on the kernels and controllability

Shengquan Xiang recently proved the following estimates for λ > 1

(1) |kλ|C0(T ) 6 e(1+L)2
√
λ

and |lλ|C0(T ) 6 e(1+L)2
√
λ.

where lλ is the kernel of the inverse transform. It allowed him to give a
new proof of the null controlloability in small-time and the small-time
stabilization thanks to these estimates. One may wonder if one could
replace

√
λ by λ1/3 in (1).



Return to the initial KdV control system

(1)

{

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = 0, y(t, L) = 0, yx(t, L) = u(t) t ∈ (0, T ).

We assume that

(2) L 6∈ N :=

{

2π

√

k2 + kl + l2

3
, k ∈ N

∗, l ∈ N
∗
}

.

Then the linearized control system around 0 is controllable and the
nonlinear control system is locally controllable in small-time. We are
interested in the rapid exponential stabilization of the nonlinear system.



Rapid exponential stabilization of the initial KdV-control

system

Theorem (JMC and Q. Lü (2013))

Let us assume that L 6∈ N For every λ > 0, there exist C > 0, r > 0 and a
feedback law y 7→ u(y) such that, for this feedback law,

(

|y(0)|L2(0,L) 6 r
)

⇒
(

|y(t)|L2(0,L) 6 Ce−λt|y(0)|L2(0,L), ∀t > 0.
)

(1)



Proof of the rapid exponential stabilizability

Unfortunately the backstepping approach (i.e. Fredholm transformations of
the second kind) is not working. We need to use more general
transformations: y ∈ L2(0, L) 7→ z ∈ L2(0, L) is now defined by

(1) z(x1) := y(x1)−
∫ L

0
k(x1, x2)y(x2)dx2.

(Every linear transformation y ∈ L2(0, L) 7→ z ∈ L2(0, L) can been written
in this form). Again, we want that the trajectory y of

(2) yt + yx + yxxx = 0, y(t, 0) = 0, y(t, L) = 0, yx(t, L) = u(t),

with the feedback law u(t) :=
∫ L
0 kx1

(0, x2)y(t, x2)dx2 is mapped into the
trajectory z = z(t, x), solution of the linear system

(3) zt + zx + zxxx + λz = 0, z(t, 0) = 0, z(t, L) = 0, zx(t, L) = 0.



Kernel equation

This property for the transformation y 7→ z holds if (and only if)

(1)







k111 + k1 + k222 + k2 + λk = λδ(x1 − x2), on (0, L)2,
k(x1, 0) = k(x1, L) = k2(x1, 0) = k2(x1, L) = 0 on (0, L),
k(0, x2) = k(L, x2) = 0 on (0, L),

where δ(x1 − x2) is the Dirac mass on the diagonal of the square
[0, L]× [0, L].
Next step: Prove the existence of a solution to the kernel equation (1).



How to prove the existence of k

Let us define an unbounded linear operator A : D(A) ⊂ L2(0, L)
→ L2(0, L) as follows.

D(A) := {ϕ; ϕ ∈ H3(0, L), ϕ(0) = ϕ(L) = 0, ϕx(0) = ϕx(L)},(1)

Aϕ := −ϕxxx − ϕx.(2)

The operator A is a skew-adjoint operator and has compact resolvent.
Denote by {iµj}j∈Z, µj ∈ R, the eigenvalues of A, which are organized in
the following way:

. . . 6 µ−2 6 µ−1 < 0 6 µ0 6 µ1 6 µ2 6 . . . .(3)

Since the control is of dimension 1 and the linearized control system is
controllable, all these eigenvalues are simple. Let us write {ϕj}j∈Z for the
corresponding eigenfunctions with |ϕj |L2(0,L) = 1 (j ∈ Z). It is well known
that {ϕj}j∈Z constitutes an orthonormal basis of L2(0, L).



The idea is to search k in the following form

(1) k(x1, x2) =
∑

j∈Z
ψj(x1)ϕj(x2).

...
Then prove that y ∈ L2(0, L) 7→ z ∈ L2(0, L) defined by

(2) z(x1) := y(x1)−
∫ L

0
k(x1, x2)y(x2)dx2

is invertible.



A general result in finite dimension

We consider the following linear control system in finite dimension

ẏ = Ay +Bu,(1)

where the state is y ∈ R
n and the control is u ∈ R. We assume that

(2) the control system (1) is controllable.

Let λ ∈ R. Let GL(n,R) be the set of invertible elements of Rn×n. We are
looking for T ∈ GL(n,R) and K ∈ R

1×n such that, if y = Tz and
u = Kz + v, then (1) is equivalent to

(3) ż = (A− λId)z +Bv,

where Id is the identity matrix in R
n×n. Clearly, if such T and K exists for

every λ ∈ R the control system ẏ = Ay +Bu satisfies the rapid
exponential stabilization property.



Existence and uniqueness of T and K

The equivalence between ẏ = Ay +Bu and ż = (A− λId)z +Bv with
y = Tz and u = Kz + v holds if and only if

AT +BK = TA− λT,(1)

TB = B.(2)

One has the following theorem.

Proposition (JMC (2015))

If ẏ = Ay +Bu is controllable, there exists one and only one
(T,K) ∈ GL(n,R)× R

1×n such that (1) and (2) hold.
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Boundary conditions

Underflow (sluice)

u

u

Overflow (spillway)

u

u



1-D hyperbolic systems

Our hyperbolic control system is

(1) yt +A(y)yx = S(y), (t, x) ∈ [0, T ]× [0, L],

where, at time t ∈ [0, T ], the state is x ∈ [0, L] 7→ y(t, x) ∈ R
n. Let

y∗ ∈ R
n be fixed. Assume that Λ := A(y∗) has n distinct real non zero

eigenvalues: after a suitable linear change of variables
Λ = diag(λ1, . . . , λk,−λk+1, . . . ,−λn) with
−λn < . . . < −λk+1 < 0 < λk < . . . < λ1. for some k ∈ {0, · · · , n}. The
term S(y) is the source term. We assume that S(y∗) = 0. In this section
we even assume that S = 0. The case S 6= 0 is considered in the next
section (one speaks in this case of hyperbolic balance laws). Let
m := n− k. For y ∈ R

n, let y− ∈ R
m and y+ ∈ R

n−m be such that

y =

(

y−
y+

)

.

The control is part of y+(t, 0) and part of y−(t, L).



Boundary conditions

(1)

(

y−(t, 1)
y+(t, 0)

)

= G

(

y−(t, 0)
y+(t, 1)

)

, t ∈ [0,+∞),

where

(i) y− ∈ R
m and y+ ∈ R

n−m are defined by

(2) y =

(

y−
y+

)

,

(ii) the map G : Rn → R
n is such that

(3)

(

y∗−(1)
y∗+(0)

)

= G

(

y∗−(0)
y∗+(1)

)

.

Part of G is fixed, part of G can be chosen in order to achieve the
exponential stability of y∗.



Shower
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Musical wind instruments
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Road traffic
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Gas pipes
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Electrical transmission lines

Transmission line Load

Power

supply

x

0 L

U(t)

I(t, 0) I(t, L)

V (t, L)
V (t, 0) RL

R0



Chromatography



Heat exchangers
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x
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Navigable rivers (see above)



Control for navigable rivers



Control for navigable rivers



Successive pools of a navigable river
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The simplest 1-D hyperbolic system

We consider the simplest hyperbolic equation

(1) yt − λyx = 0, x ∈ (0, 1),

under the boundary conditions

(2) y(t, 1) = u(t),

where λ ∈ (0,+∞) . The control is u(t) ∈ R. The goal is to produce a
feedback law y ∈ L2(0, L)2 7→ u(y) ∈ R such that, for the closed-loop
system, one has finite-time stability in the optimal time, which is

(3) Topt :=
1

λ
.

It is very simple: just taking u(y) = 0 solves the problem.



x1

t

(0, 0)



x1

t

(0, 0)

Topt



x1

t

u(y) = 0

(0, 0)

Topt
y = 0



A tutorial example showing that u = 0 is not always the

best choice

We consider the control system

y1t + λ1y
1
x = 0, y2t − λ2y

2
x = 0, y3t − λ3y

3
x = 0, x ∈ (0, 1), t > 0,(1)

y1(t, 0) = ay2(t, 0) + by3(t, 0), y2(t, 1) = u1(t), y
3(t, 1) = u2(t),(2)

y1(0, x) = y10(x), y
2(0, x) = y20(x), y

3(0, x) = y30(x),(3)

where, at time t > 0, the control is
(u1(t), u2(t))

tr = (y2(t, 1), y3(t, 1)) ∈ R
2 and the state is

y(t, ·) = (y1(t, ·), y2(t, ·), y3(t, ·))tr ∈ L2(0, 1)3. The real numbers a and b
are given. We assume that

(4) 0 < λ1, 0 < λ2 < λ3.

Let

(5) τi =
1

λi
, i ∈ {1, 2, 3}.



If one uses the controls u1(t) = u2(t) = 0, one gets that

(1) y(T1, ·) = 0,

with

T1 := τ1 + τ2.(2)

Moreover if a 6= 0 and b = 0, T1 is optimal: there are initial data such that,
whatever are the controls one cannot reach 0 at a time smaller than T1
(see Li Tatsien’s book in 2010 for more general situations). However, as
proved by L. Hu in 2015 (in a more general framework), if b 6= 0 one can
steer the control system to 0 in time

(3) T0 := max{τ1 + τ3, τ2} < T1.

Let us do it with a feedback law. Note that u1 = u2 = 0 is not working if
a 6= 0: in this case whatever is 0 < T < T1 there are initial data such, with
these controls, that y(T, ·) 6= 0. The idea is that we would like to have

(4) (y1(t, 0) =) ay2(t, 0) + by3(t, 0) = 0.

as fast as possible. For that, we point out that

(5) ay2(t, 0) + by3(t, 0) = ay2(t− τ3, τ3/τ2) + by3(t− τ3, 1).



Hence the idea is to use the feedback law

(1) u1(t) = y2(t, 1) = 0, u2(t) = y3(t, 1) = −(a/b)y2(t, τ3/τ2).

With this feedback law, one has

y1(t, 0) = 0, ∀t > τ3,(2)

y1(t, x) = 0, ∀t > τ3 + τ1x,(3)

y2(t, x) = 0, if t > τ2 − xτ2,(4)

y3(t, 1) = 0, ∀t > τ2 − τ3,(5)

y3(t, x) = 0, ∀t > τ2 − τ3x.(6)

In particular

(7) y(t, ·) = 0, ∀t > T0.



y2(t, 1) = 0, y3(t, 1) = −(a/b)y2(t, τ3/τ2)

x1

t

0

τ3

τ3 + τ1y1 = 0



y2(t, 1) = 0, y3(t, 1) = −(a/b)y2(t, τ3/τ2)

x1

t

0

τ2

y2 = 0



y2(t, 1) = 0, y3(t, 1) = −(a/b)y2(t, τ3/τ2)

x1

t

0

τ2 − τ3

τ2

y3 = 0



y2(t, 1) = 0, y3(t, 1) = −(a/b)y2(t, τ3/τ2)

x1

t

0

τ2 − τ3

τ2
τ3

τ3 + τ1y = 0



Comparaison of the two feedback laws

y2(t, 1) = 0 in both cases.

y3(t, 1) = −(a/b)y2(t, τ3/τ2)

x1

t

0

τ2 − τ3

τ2
τ3

τ3 + τ1y = 0

y3(t, 1) = 0

x1

t

0

τ2
τ3

τ2 + τ1
τ3 + τ1

y = 0



The general case

We consider the n× n hyperbolic system

yt + Λyx = 0, t > 0, x ∈ (0, 1),(1)

with Λ = diag(λ1, . . . , λk,−λk+1, . . . ,−λn). We assume that
−λn < . . . < −λk+1 < 0 < λk < . . . < λ1. The controls are

(2) u1(t) = yk+1(t, 1), . . . , um(t) = yn(t, 1).

with m := n− k. On the boundary x = 0 the boundary condition is

(3) (y1, . . . , yk)tr(t, 0) = B(yk+1, . . . , yn)tr(t, 0)

with B ∈ R
k×m. Let τi := 1/λi. Let us define T0 > 0 by

T0 := max{τ1 + τm+1, . . . , τk + τm+k, τk+1} if m > k,(4)

T0 := max{τk+1−m + τk+1, . . . , τk + τk+m} if m < k.(5)



Then one has the following theorem.

Theorem (JMC and Hoai-Minh Nguyen (2018))

Assume that, for every 1 6 i 6 min{k,m− 1}, the i× i matrix formed
from the last i columns and the last i rows of B is invertible. Then there
exists a linear feedback which yields the null-controllability at the time T0.
Moreover, for any T < T0, there exists an initial datum such that
y(T, ·) 6≡ 0 for every control.

Remark

This result also improves the optimal time for null controllability. The best
prior estimate for the null controllability was the time given by L. Hu
(2015) in the case m > k: T1 := max{τk + τm+1, τk+1}. One always have
T0 6 T1 and this inequality is strict if k > 1.
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