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@ Motivation of the stabilization/rapid stabilization prdems
@ Some results in nite dimension

© sSmall-time stabilization of 1-D linear heat equations

© Rapid exponential stabilization of Korteweg-de Vries diques
© Finite-time stabilization of 1-D linear hyperbolic system

© Finite-time stabilization of 1-D linear balance laws



@ Motivation of the stabilization/rapid stabilization prdéms



Cart-inverted pendulum: the equilibrium
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Double inverted pendulum (CAS, ENSMP/La Villette)
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Rapid stabilization



@ Some results in nite dimension
@ Stabilizability problem
@ Linear systems and applications to nonlinear systems
@ Necessity to remove th€l-smoothness of the feedback laws
@ Finite-time stabilization of linear controllable systems
@ Obstruction to the stabilizability
@ Finite-time stabilization and time-varying feedback laws



The stabilizability problem

We consider the control systegn= f (y;u) wherey in R" is the state and
u in R™ is the control. We assume thdt(0;0) = 0.

Problem

Does there exists : R" ! R™ vanishing atO such that0 2 R" is (locally)
asymptotically stable foy = f (y;u(y))? (If the answer is yes, one says
that the control system is locally asymptotically stalzlite.)

Remark

The mapu:y 2 R" 7! R™ is called a feedback (or feedback law). The
dynamical systeny = f (y; u(y)) is called the closed loop system.
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Regularity of feedback laws

The regularity ofy 7! u(y) is an important point. Withu continuous,
asymptotic stability implies the existence of a smoothdttiyapunov
function and one has robustness with respect to small actuatrors as
well as small measurement errors.

If u is discontinuous, one needs to de ne the notion of solutidrihe

closed loop system = f (y; u(y)) and study carefully the robustness of th
closed loop system.



Controllability

Let T > 0. Given two statey® andy?!, does there exist a control
t 2 [0; T] 7! u(t) which steers the control system froyi to y!, i.e. such
that

1) y=f(yu); y0)=y° ) yT)=y'?

If the answer is yes, the control system is said to be comtiptdl on[O; T].



Controllability of linear control systems

The control system is
1) y=Ay+Bu;y2R"u2R™;

whereA2 R" "andB 2 R" ™M,

Theorem (Kalman's rank condition (1960))

The linear control systemg = Ay + Bu is controllable orf0; T] if and only
if

2) SpanfA'Bu;u2 R™; i 2f0;L:::;n 1gg= R™:




Small-time local controllability

We assume thatye; Ue) is an equilibrium, i.e.f (ye; Ue) = 0. Many
possible choices for natural de nitions of local contrblldy. The most
popular one isSmall-Time Local Controllability (STLC) : the state
remains close tge, the control remains close toe and the time is small.


















The linear test

We consider the control systegn= f (y;u) where the state iy 2 R" and
the control isu 2 R™. Let us assume that (ye; Ug) =0. We are
interested in the small-time local controllability gf= f (y;u) around

(Ye; Ug). L. Nirenberg, besides to be a great mathematician, alwaygeg

great advices when you have no more idea to solve a givenepnohlwas
told that one of his famous advices is
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The linear test

We consider the control systegn= f (y;u) where the state iy 2 R" and
the control isu 2 R™. Let us assume that (ye; Ug) =0. We are
interested in the small-time local controllability gf= f (y;u) around

(Ye; Ug). L. Nirenberg, besides to be a great mathematician, alwaygeg
great advices when you have no more idea to solve a givenepnohlwas
told that one of his famous advices is

Have you tried to linearize?

We follow Nirenberg's advice. The linearized control systd (Ye; Ue) IS
the linear control systery = Ay + Bu with

1) A= %];SYe; Ue); B := %EYe;Ue):

If the linearized control system= Ay + Bu is controllable, then
y = f (y;u) is small-time locally controllable dle; ue).



Stabilizability of linear controllable systems

Notations. For a matrixM 2 R™ ", Py, denotes the characteristic
polynomial ofM : Py (z) := det(zl M):

Let us denote byP,, the set of polynomials of degraein z such that the
coe cients are all real numbers and such that the coe cienf @" is 1.
One has the following theorem.

Theorem (Pole shifting theorem, M. Wonham (1967))

Let us assume that the linear control systgn¥ Ay + Bu is controllable.
Then

(1) PA+BK;K2Rm n :PnZ

If the linear control systeny = Ay + Bu is controllable, there exists a
linear feedbacly 7! u(y) = Ky such that0 2 R" is (globally)
asymptotically stable for the closed loop systgm Ay + Bu(y).




Application to nonlinear controllable systems

We assume thaf (0;0) = 0. Let us consider the linearized control systerr
y= Ay + Bu ofy= f(y;u)at(0;0)2 R" R™:

_ @f .- @F
(1) A = @J0,0),B. 00

Let us assume that the linearized control systgm Ay + Bu is
controllable. Then, by the pole-shifting theorem, therasexK 2 R™ "
such that (A + BK )= f 1g. Let us consider the feedbacKy) = Ky.
Then, if X (y) := f (y;u(y)), X40) = A+ BK . Hence, by Lyapunov's rst
theorem,0 2 R" is locally asymptotically stable for the closed loop systel
y = f(y;u(y).
In conclusion, if the linearized control system is congdolé, then
@ The control systeny = f (y;u) is small-time locally controllable at
(0;0).
@ The control systeny = f (y;u) is locally asymptotically stabilizable
(at the equilibrium(0; 0)).



A rst notion of rapid stabilization: Rapid exponential

stabilization

We consider the control system

1) y = f(y;u);

where the state iy 2 R" and the control isu 2 R™. We assume that

f (0;0) =0. A rst possible notion for rapid exponential is the rapid
exponential stabilization. It is the following propertyorFevery > 0,
there exist a feedback law2 R" 7! u(y) 2 R™, C > 0 andr > 0 such
that, for every solution of the closed loop systens f (y; u(y)) such that
jy(0)j 6 r, one has

) jy()j 6 Ce jy(0)j; 8t > 0?



Rapid exponential stabilization and the linear test

One has the following theorem.

Theorem (Corollary of the Pole shifting theorem)

If the linear control systeny = Ay + Bu is controllable, the rapid
exponential stabilization property holds for this contsyistem. If the
linearized control control system é0;0) 2 R" R™ ofy = f (y;u) is
controllable, theny = f (y; u) is rapidly exponentially stabilizable.




An example: Cart-inverted pendulum




Cart-inverted pendulum: The equations

Let
@) Y1i= jY2i= [Y3i= 2Yyai= ;U= F

The dynamics of the cart-inverted pendulum systeny is f (y; u), with
y = (y1,¥2;y3y4)" and

0 1
Y3
Ya
(= mlyZsiny, mgsiny, cosy, . u
' M + msin?ys M + msin?y,
mly 2 siny, cosy, + (M + m)gsiny, u cosy,

(M + msin?y,)l (M + msin?y,)l



Stabilization of the cart-inverted pendulum

For the cart-inverted pendulum, the linearized controlteys around
(0;0)2 R* Risy= Ay + Bu with

09 0 10 001
0 0 0 1B o
_ mg :_gﬁ
(1) A O(MW) 0 ; B M @ |
+ m)g 1
oilvII 00

One easily checks that this linearized control system sithe Kalman
rank condition and therefore is controllable. Hence the-@averted
pendulum is small-time locally controllable @;0) 2 R* R and is
rapidly exponentially stabilizable (at the equilibriui®; 0)).



Necessity to remove ti&'-smoothness of the feedback le

Let us consider the control system
@) YIS Y1 Y3Y2= U

where the state igy1;y,)" 2 R? and the control isu 2 R. The linearized
control system of (1) a{0;0) 2 R?> R is

(2) Y1= Y1 Y2 = U

which is not controllable. However the nonlinear contradteyn (1) is
small-time locally controllable arour@®;0) 2 R? R. This can been seen
by the return method, i.e. constructs small (but n6j trajectories going
from 0 to 0 and having a linearized control system which is contraiabl
This can been also checked by using criteria relying ontidraie brackets.



But there is nou 2 C1(R?;R) such that0 2 R? is asymptotically stable for
the closed loop system= X (y)

1) X1(y) = y1  y3; Xa(y) = u(y):
Indeed, one has

@ X0=

and we cannot have both tracé 40) 6 0 and detX 40) > 0. However, as
proved by Dayawansa and Martin (1989), there are continufaesiback
lawsu such that0 2 R? is asymptotically stable foy; = y1  y3,

yo = u(y). See also below.



A simple example

Since we have to relax the regularity on the feedback laws, @an be
more ambitious and look for nite-time stability instead aymptotic
stability as shows the following simple example. One cansithe simplest
control system

1) y=u;

where the state iy 2 R and the control isu 2 R. We consider the
feedback lawu(y) ;=  (3=2)jyj*3sign(y). The solution to the Cauchy
problemy = (3=2)jyj'signy), y(0) = y° is

(2) y(t) = [§y%5% ¥ sig(iy%?= ) if t 2 [0;jy%%;

3) y(t) =0 if t > jy%*=:

This feedback law leads to nite-time stability.



Finite-time stability

Let X 2 CO(R";R") andye 2 R" be such thatX (ye) = 0. One adopts

the following de nition
De nition (Finite-time stable)

One says thatye is nite-time stable fory = X (y) if it is stable and there

exists > Oand > O such that

) (y.= X(y) andjy(0)

Yel <)) (y()=0;8t> )




Finite-time stabilization

Let us now consider the control systgm= f (y;u) with
f:R" RM™! R"of classC! and let(ye;ue) 2 R”  R™ be an
equilibrium ofy = f (y;u), i.e. f (Ye;Ue) = 0.

De nition (Finite-time stabilizable)

One says that(ye; Ue) is nite-time stabilizable fory = f (y;u) if there
existsu 2 CO(R"; R™) such thatu(ye) = ue andye is nite-time stable for

y = f(y;u(y)).




The case of linear systems

Let us consider nite dimensional control systems of thddiwing form
1) y = Ay + Bu

whereA 2 R" ", B 2 R" M, the state isy 2 R" and the control is
uz2RM™,

Theorem (JMC-L. Praly (1991))

The control systen(1) is nite-time stabilizable if and only if it is
controllable.




An example of nite-time stabilization

(1) Y1= Y2, Y2 = U

where the state iy1;y2)" 2 R? and the control isu 2 R.
We use another very important Nirenberg's advice
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An example of nite-time stabilization

(1) Y1= Y2, Y2 = U

where the state iy1;y2)" 2 R? and the control isu 2 R.
We use another very important Nirenberg's advice

Have you tried the dimension 2?

We go one step further and try the dimension 1. Then the 1-digienal
linear control system is

2 Y1 = Y2

where the state iy; 2 R and the control isy; 2 R.
One then notes that, for 2 (0; 1), the feedback law

3) ya(y)) = sigriyniy = f yig

nite-time stabilizes the control system (2). See above fo= 1=3.



The standard backstepping approach is a method to stabiliwecontrol
system

1) y1 = f(y1y2); Y2 = U,

where the state igy{;yJ)" 2 R" = R"* "2 y; 2 R" y, 2 R"2, and the
control isu 2 R"2 if one knows how to stabilize the control system

2 y1 = f(y1y2);

where the state iy; 2 R"* and the control isy, 2 R"2 by means of a
feedback law of clas§?'. Let us recall the method. Just to simplify the
notation we assume that, = 1 and that (ye; ue) = (0;0). Let

y>:R"21 R, y; 7!y, be of clasgC?, vanishing at0 2 R™ and such that
0 is asymptotically for the closed-loop systen¥ f (y1;y2(y1)). Let

V 2 C1 (R™), y; 7! L(y1), be a Lyapunov function of; = f (y1;y2(y1)).
We consider the control Lyapunov function for the controstgeyn (1)

© Vmya) = Lo+ 502 yalyn)

The natural idea behind this de nition is to penalize the fabat
y2 6 ya(y1).



Along the trajectories of; = f (y1;Y2); Y2 = Uy, one has

L (LAY (v2  y2(y))yyo)) f (yiiy2) + (Y2 ya(y1))u
LYAyDf (y1;y2(y1))

(Y2 Ya(yr) LUya)t0edel T0aneOnl - yQey )f (yr;yp) + u

Hence the feedback law

f(y1y2)  fynya(y1)
y2  Ya(y1)

u(ys;y2) = ya(yo)f (yiy2) LAy1) (y2  ya(y1)

leads to

Vo= LYy (v ya(y1)) (V2 Ya(ya))? < O for jyaj+jy-j small but notO.

Hence this feedback law asymptotically stabilizes f (y1;Y2); Y2 = Uy,



Let us follow this method foy; = y2, Y2 = Uz, Y2(y1) = f y1g . One
takesL (y1) = y3=2 and

1) V(y1;y2) = —yl + ' (y1Y2) = —yl (yz+ fyi9 )%

the idea of' being, again, to penalize the factthgb 6 f yig .
Unfortunately thisV is not of classC! on the full liney; = 0. There are
other' which are more regular and which also penalizes the fact that
y, 6 f yig . For example,

R _
"y = {7,y fsgt yi ds

(2) 19 _ .
Y2l 7+ yayo + iy ),

which is of clas€?! and satis es' (y1;y2) > 0 with equality if and only if
yo = f yig . For homogeneity issues, one then replaces (1) by

3) V(y1;y2) - o—ivitt + 7 (yuy2)

= iyad® T+ yayo + jygjtt



With this newV one has, along the trajectories gf = y», Yo = u,
(1) V= fyg® )ty utyi+(L+ )fyig val
Note that, if yo + fy;g =0, then

2 V= jy1j® 60

Hence, by homogeneity argument, one sees that, if

(3 u:= kfy,+fyig g %

then, if k > 0 is large enough, there exists> 0,
(4) e v2E+).

Note that u de ned by (3) is continuous and vanishes @if 2 > 1.
Hence, taking 2 (1=2;1), the u de ned by (3) leads to stabilization in
nite time for y; = y», y» = u provided thatk > 0 is large enough.



The general casg = ¥, V2= V3... Yo 1= Yn, ¥p = U

We consider the control linear control system

(1) Yi= Y2, ¥2= Y305 Yn 1= Yoy Yo = U;

Adapting the above construction and taking2 (n  1)=n;1) one can
get feedback laws leading to nite-time stabilization. S#C and L. Praly
(1992), P. Bhat and D. Bernstein (1998, 2002), Y. Hong (200%). Hong,
Y. Xu, and J. Huang (2002), Y. Hong and Z.-P. Jiang (2006), Eotay
and W. Perruquetti (2006), E. Bernuau, W. Perruquetti, D. Bov, and E.
Moulay (2015), B. d'Andréa-Novel, JMC, and W. Perruquetfi020).

Note that it follows from this result that any linear conttable system in
nite dimension are nite-time stabilizable by means of stmary feedback
laws. The nite-time stabilizability of nonlinear systerhgving having a
controllable linearized control system @;0) 2 R" R™ follows from
homogeneity arguments (one uses here L. Rosier's resulherexistence
of homogeneous Lyapunov for homogeneous vector elds).



Obstruction to the stabilizability

Theorem (R. Brockett (1983))
If the control systeny = f (y;u) is locally asymptotically stabilizable the

(B) the image byf of every neighborhood ¢0;0) 2 R" RMis a
neighborhood oD 2 R".
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The slider




Equations for the slider

The slider is actuated by two propellers producing forEgsand Fr. The
sum of these two forces is directly linked to the acceleratid the vehicle,
whereas the di erence acts on the angular dynamics. Let usotke

1= F_+Frand ,=Fr F_, the dynamics can be written:

< m® = cos( ) 1;
1) . m% = sin( ) 1
1t = g

wherem is the slider mass and is the moment of inertia of the slider
about its center of mass.



Equations for the slider in the fosn¥ f (y; u)

Let

1) ot T
b m 1
Then the dynamics of the slider can be written in the fogre f (y; u) with

(2 f (y;u) := (y2; U1 COSfys); Ya; U1 SiN(Ys); Ye; U2)":



Slider: Controllability and Brockett's condition

One has the following theorem.

The slider control system is small-time locally controéaht the
equilibrium(0; 0) 2 R®  R2 but does not satisfy the Brockett condition.

For the Brockett condition, consider the equation

1) (Y2; U1 cOsfys); ya; U1 Sin(ys); Ye; U2)" = (0;0;0; ; 0;0)":



A solution: Time-varying feedback laws

Instead ofu(y), useu(t;y). Note that asymptotic stability for time-varying
feedback laws is also robust (there exists again a stricpugav function).
First use of time-varying feedback laws:

e n=1: E. Sontag and H. Sussmann (1980).

@ For a driftless control system with =3 andm =2: C. Samson
(1992).



Continuous reachability

In order to deal with systems for which the linearized systemot
controllable, we use the following de nition.

De nition

The origin (ofR") is locally continuously reachable in small tif@ the
control systemy = f (y;u) if, for every positive real numbdr, there exist
a positive real number andu : B+ ! L1((0;T); R™) such that

1) u2 C® B+;LY((0;T);R™)
(2) Sugdj u(a)(t)j;t 2 (0;T)g! Oasa! O;
®3) ((y.= f(y;u(@(t); y(0)= a)) (y(T)=0));8a2 B-:




Continuous reachability

In order to deal with systems for which the linearized systemot
controllable, we use the following de nition.

De nition

The origin (ofR") is locally continuously reachable in small tif@ the
control systemy = f (y;u) if, for every positive real numbdr, there exist
a positive real number andu : B+ ! L1((0;T); R™) such that

1) u2 C% B-;L((0;T);R™)
(2) Sugdj u(a)(t)j;t 2 (0;T)g! Oasa! O;
3) ((y=f(y;u@(t)); y@0)=a)) (y(T)=0));8a2B-:

Open problem: Small-time local controllability and contirus reachability

Assume thatf is analytic and thaty = f (y;u) is small-time locally con-
trollable at (0;0) 2 R™ R™. Is the origin (ofR") locally continuousl
reachable in small time for the control systgn¥ f (y; u)?




Local continuous reachability and nite-time stabilwati

Theorem (JMC (1995))

Assumef is analytic, that0 2 R" is locally continuously reachable in sm
time for the control systeny = f (y; u), and thatn 62 £;3g. Then, for
every positive real numbér, there exist' in (0;+1 ) andu in

Co%(R R"™;R™), of classC! onR (R" nf0g), T-periodic with respect
to time, vanishing orR f Og and such that, for everg 2 R,

) ((v.=f(y;u(ty)) andy(s)=0) ) (y()=0;8 >59));
(2 (v=f(y;u(ty)) andjy(s)j6 ")) (y()=0;8 >s+T)):

In particularQ is nite-time stable for the closed-loop system
y = f(y;u(ty)).

a



An example: The slider




Let us recall that the dynamics of the slider can be writterthie form
y = f (y;u) with

1) f (y;u) := (y2; U1 COSfys); Ya; U1 SiN(ys); Ye; U2) " :

As mentioned above, the slider does not satis es the Brockendition at
the equilibrium(0;0) 2 R®  R? and therefore is not locally asymptotically
stabilizable by means of stationary feedback laws (i.edifeek lawsu(y)).
However it follows from our result on the stabilizability Small time that
the following proposition holds.

Proposition

The slider is asymptotically and even in small time stahiille by means o
periodic time-varying feedback laws (i.e. feedback ladtsy) which are
periodic with respect to time).

Construction of a time varying feedback stabilizing théesliin small time
(B. d'Andréa-Novel, IMC, and W. Perruquetti (2019)).



© Small-time stabilization of 1-D linear heat equations



The problem

We consider the heat control system
D) Yt Y =0;y(t0)=0;y(t;1)=u(t); t2 [0;+1); x 2 [0;1];

where, at timet 2 [0;+ 1 ), the state isy(t) 2 L?(0; 1),
x 2 (0;1) 7! y(t)(x) := y(t;x) and the control isu(t) 2 R. We are
interested in

© The rapid exponential stabilization of (1),
© The nite time stabilization of (1).
Note that the linear control system (1) is known to be null ¢allable.



Concerning the rapid stabilization we want to prove thedwaiihg theorem

Theorem

Let > 0. There a feedback law :L?(0;1)! R such that there exists
C( ) > 0 such that, for every solution of

(2) Yt Yxx =0;y(t;0)=0;y(t;1)=u (y(t; )); t2[0;+1); x 2 [0; 1];
one has
®3) jy(t; )itz 6 C( )e 'jy(0; )j z2; 8t> O

This theorem is a simple corollary of a pole shifting theordue to D.
Russell (1976). Let us give a proof due to D. Bo%kovi¢, M. krstnd W.
Liu (2001). It relies on backstepping.




A quick history on backstepping

1. Backstepping was initially a recursive method to stabilinite
dimensional control system of the formn= f (X;y), y = u. See above.
2. First application to PDE: JMC and B. d'Andréa-Novel (1998



For more details

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 p. Pdf
le freely available from my web
page.



A quick history on backstepping

1. Backstepping was initially a recursive method to stabilinite
dimensional control system of the forrn= f (x;y), y = u. See above.
2. First application to PDE: JMC and B. d'Andréa-Novel (1998

3. This method has been used on the discretization of padiarential
equations by D. BoZkovi¢, A. Balogh and M. Krstic in 2003.

4. A key modi cation of the method is introduced by D. Bo2koyiM.
Krstic and W. Liu in 2001: They saw that at the continuous levbe
backstepping method corresponds to a Volterra transfotiorabf the
second kind for the transformatiol and well chosen target systems.
5. For a survey on this method with Volterra transformatiafsthe second
kind, see the book by M. Krstic and A. Smyshlyaev in 2008.



Backstepping and the 1D heat equation

We consider the heat control system
1) v Y =0;y(t0)=0;y(t;1)=u(t); t 2 [0;+1); x 2 [0;1];

where, at timet 2 [0;+ 1 ), the state isy(t) 2 L?(0; 1),

X 2 (0;1) 7! y(t)(x) := y(t;x) and the control isu(t) 2 R. We are
interested in the rapid exponential stabilization of thiselr (controllable)
control system. Let 2 R. Consider the following controlled system
(called the target system)

(2 zn zx= z;z(50)=0;2z(t1)=v();t2[0+1);x2[01]

where, at timet 2 [0;+ 1 ), the state isz(t) 2 L?(0; 1),
x 2 (0;1) 7! z(t)(x) := z(t;x) and the control isv(t) 2 R. Note that for
(2) with z =0, one has

®3) jz(t)i¢ 6 e 'jz(0)if;8t > O:



D. BoZkovi¢, M. Krstic and W. Liu in 2001 looks for maps

T 1:L%0;1)! L%0;1)y7!'zandK :L?%0;1)! R,z7! Kz such
that the target system (2) is transformed into the initial sem (1) if
u= Kz + v. They choose to look fof ! in the class of Volterra

transform of the second kind: 7

X1

1) Z(x1) == y(x1) . k(x1;x2)y(x2)dxa:

One of the advantages of the Volterra transforms of the selckind is that
there are invertible (ik is smooth enough, for example in
L2((0;1) (0;1))). Note that, onceT is de ned, we must take
Z,
2 Kz = K(1;x2)y(x2)dxz:
0

R
Moreover, the feedback law(y) := olk(l; s)y(s)ds leads forz to the
closed loop system
3) zi = z;z(50)=z(t;1)=0;

which insures exponential stability farwith an exponential decay rate (in
L2(0; 1)) at least equal to .



Sincey 2 L2(0;1)! z 2 L?(0;1) is an isomorphism the same holds for
the closed loop system
Z,
@ Yo Yo =05 y(0)=0;y(t 1) = . k(1;s)y(s)ds;
which shows the rapid exponential stabilizability of th&iah heat control

system (with a method to compute a feedback law leading to an
exponential stability with an exponential decay rate agéaas we want).



Kernel equation

Straightforward computations show that thg system is equivalent to the

system if and only ik satis es the following equation, called the kernel
equation,

8
> kin k= ki O0<xz2<x1<1

1) k(x1;0) =0; 0<x1<1;

k(x;x) = EX; O<x< 1

ki = @,k i2f12g.



A method to prove the existencekof

D. Bo%kovi¢, M. Krstic and W. Liu in 2001 proposed the follogiiterative
scheme. Let us make the following change of variables

t= X1 Xp;S= X1+ Xo and de neG(s;t) := k(x1;X2) on

To:=f(s;t); t2[0;1];s2 [t; 2 t]g. Thenk satis es the kernel equation
if and only if

8

E Ggt = ZG; in To;
1) G(s;s) = 0; in [1;2];

-§ G(s;0) = ZS; in [0; 2]:

One integrates the rst equation of (1) with respect tiofrom 0 to t. One
gets, using also the third equality of (1),
Z t Z t
(2)  Gs(sit)= Gs(s;0) - G(sjty)dts = —  —  G(s;ty)dty:
4 4 4,
We integrate this equation with respect ®fromt to s. Using also the
second equation of (1), we get



z
st
(1) G(sit)= —(s t) — G(s1;t1)dt1dsy
4 4 ¢ o
One de nes inductivelG" : To! R, n 2 Nnf0g, by requiring

) Gl(s;t) = 0;
z S t

) G"(sih= (s t) - G"(s1;t1)dtyds;
4 4 . o

One gets, by induction on, that

O I e e G o
(k  1)lk!4k ’

(4) G'(s;t) =
k=1

a sum which converges as! +1 .



Formulas foG andk

Let
X1 % 1

— ( x) _
1) I (x) = . DK T
Then

| p_t
@) G(si= (s 1) p ).
2 p__ st

(3) k(Xl;XZ) = —X2I % LX%)) .

2 xZ x3)



How to recover the null controllability with the backstegp

method (JMC and H.-M. Nguyen (2015))

From now on we assume that> 1. Looking at the explicit expression of

the kernelk, one sees that
p—

(1) jKiniy) 6 Ce° ;

where

2) = f(X1;%2); 0<x2<x1< 1g

The inverse transform of 7
X1

€) z(X1) = y(x1) K(x1; X2)y(x2)dX2;
0

has the form Z,.

4) y(X1) == z(X1) [(X1;X2)Z(X2)dx2:
0

The exact expression ¢fshows that



So if we apply the backstepping forand during the interval of timg0; ],
we have

p_
(1) Jy()jiL26 C jz()i26 Ce  jz(0)j.26 Ce € jy()je:

Similar estimates holds for the contrg(t; 1). Let T > 0, and for
n2 Nnf0;1g, lett, = T(1 1=n?) and , = n8. Lett,:=0 and

1 :=1. During the intervallt,; th+1) we apply the feedback law coming
from the backstepping with =

Proposition (H.-M. Nguyen and JMC (2015))

2 “Iirp jy(t; )iz =0;
) lim u(t)=0:
tr T

Hence this is a new method to prove the null controllabilifyttee heat
equation in small time.



The estimates
- . pi
1) jKiyzy 6 Ce° ;

are crucial for this method. Note that one can nd related iesates in G.
Lebeau and L. Robbiano (1995) (in every space dimension).

Let us now turn to the case of the following more genekdd parabolic
equations

3) ye(6x) = (a()yx(Ex))x + eX)y(t;x) in(1; 2) [0;1f
y(t0) =05 y(t; 1) = u(t) fort2 (1, 2):

The target system is then

) zi(t;x) = (a(X)zx(t;x))x + c(X)z(t;x) z in( 1 2) [01];
z(t;0) = 0; z(t; 1) = v(t) fort2 ( 1; 2):

We assume that 2 H2(0;1), a> 0in [0; 1], and thatc 2 H(0; 1).



Proposition (H.-M. Nguyen and JMC (2015))

There exists a kernéd which allows to transform the initiay system into
the z system and one has, for2 [1;+1 ),

1) jKii) 6 Ce°

Remark

Our proof is di erent from the iterative scheme mentionedosie. We
interpret the kernel equation ok (and ) as a wave equation de ned in
[0; 1]°. Estimates(1) and (2) follow from an energy type estimate for the
wave equation which is somehow nonstandard in the sensethigaénergy
not only contains the gradient of the solutions but also tlwusions; the
standard energy estimate only gives the exponerin (1).

| A\




Small-time stabilization

However the above strategy does not seem lead to stabiizdti nite
time. This is due to the fact thau(t;y) is small along the trajectories
starting from the time0 but might be quite large for a givepandt! T .
In fact 0 2 L?(0; 1) is (probably) not stable with this feedback law.



We look for time-varying feedback laksy) 2 R L2(0;1) 7! u(t;y) 2 R
satisfying the following three properties.

(P1).

(P2).

(P3).

The feedback law is T-periodic with respect to time:
(1) u(ty) = u(t+ T:y) for every(t;y) 2 R L?(0;1):

There exists a strictly increasing sequerit@non of real numbers
such that

2) to=0;
) n!Ilrpl th = T;
(4) uisofclassClin[ty;tns1) L2(0;1) for everyn 2 N:

The mapu vanishes orR f 0g and there exists a continuous
functionM :[0;T) ! [0;+1 ) such that

() ju(ty2) u(ty1)j6 M(t)jy2 Vyij.2
8(ty1y2) 2 [0;T) L20;1) L3(0;1):



Proposition

Assume thatF satis es PropertiegP1); (P2), and (P3). Let06 s<T.
Then, for every® 2 L?(0; 1), there exists a unique solution

y 2 CO [s;T);L%(0;1) of
8
3 Yi(tx) = yxx (%) for(tx) 2 (s; ) [0;1];

1) 5 y(t;0)=0; y(t; 1) = u(t;y(t; ) fort2(s; );

y(s; )= y° for x 2 [0; 1]:




Proposition

Assume thatF satis es PropertieP1); (P2), and (P3) and that there
existC > 0andT 2 (0; T) such that

(Pa) juty)j 6 Ciyiis: 8(ty) 2 [T;T) L2(0;1):

Then, for everys 2 R and for everyy® 2 L?(0; 1), there exists a unique
solutiony 2 C° [s;+1 ); L?(0;1) of

§ Yi(t; X) = yxx (6 X) for(t;x) 2 (s;+1) [0;1];
1) 5 y(t;0)=0; y(t; 1) = u(t;y(t; ) fort2 (s;+1);
y(s;)=y° for x 2 [0; 1]:

Notation (t;s;y°) := y(t; ).



Theorem (JMC and H.-M. Nguyen (2015))

LetT > 0and > 0. There exists a time-varying feedback laws
(ty)2 R L2%0;1) 7! u(t;y) 2 R satisfying PropertiesR1), (P2), (P3)
and (P4) such that

(1) (t+T;ty% =0 forevery(t;y®) 2 R L?(0;1)
such thatjy%j 2 6

and such that the following uniform stability condition

( 8"> 0;9 > Osuch that,8t°2 R; 8t 2 [t®+1 );

2
@ and8y® 2 L(0;1); jy%26 ) j(tt%y%)j6 "

holds. In particular our heat equation is small-time stilaible by means @

time-varying feedback laws.

o

=5



Open problem

Is it possible to stabilize in nite time (or even in small #@nthe heat
eqguation by means of stationary feedback laws?

May be one can try to use the kernlel(y instead of the kernek (;) with
(y) converging to+1 asy! O.



© Rapid exponential stabilization of Korteweg-de Vries diques



y(t; X)T




A KdV control system

1) Vet Vet Yo T YYx =0;t2[0;T]; x 2 [O;L];
(2 y(t;0) = y(t; L) =0; yx(t;L) = u(t); t 2 [O; T]:

where, at timet 2 [0; T], the control isu 2 R and the state is
y(t; ) 2 L%(O;L).



Controllability of the linearized control system

Theorem (L. Rosier (1997))

For everyT > 0, the linearized control system is controllable in tiffig(in
L2(0;L)) if and only

- )
2 2
L62N= 2 %;kZN;IZN




Application to the nonlinear system

Theorem (L. Rosier (1997))

For everyT > 0, the KdV control system is locally controllable in tinieif
L 62 N




A second KdV control system

1) Yo+ Yx+ Yoox + Yyx =0;12 (0;T); x 2 (O;L);
y(t;0) = u(t); y(t;L)=0; yx(t;L)=0;t2 (0; T):

For everyL > 0, the control system (1) is locally null controllable in sinal
time: L. Rosier (2004).

Theorem (E. Cerpa and JMC (2013))

For every > 0, there existC > 0, r > 0 and a feedback lawy 7! u(y)
such that, for this feedback law,

) iy@iiz0)6 1 ) iy(iLz:) 6 Ce 'jy(0)jL2y); 8t> O:




Proof: With M. Krstic's backstepping approach

We look for a transformatiory 2 L2(0;L) 7! z 2 L2(0;L) de ned by
Z
(1) z(X1) == y(X1) k(X1;X2)y(X2)dXz;

X1

such that the trajectoryy of
() yi+ yx+ Yax =0;y(60) = u(t); y(tL) =0; yx(t; L) =0;

R
with the feedback lawu(t) := 0" k(0; X2)y(t; x2)dx» is mapped into the
trajectory z = z(t; x), solution of the linear system

) Zi+ 2+ Zyx + 2 =0;2z(;0)=0; z(t;L)=0; z«(t;L) =0:

Note that, for (3), one has (just multiply (3) by and do some integrations
by parts):

(4) jz(MjL20.) 6 € 'jz(0)jL2(0L); Bt > O



Kernel equation

This property for the transformatiory 7! z holds if (and only if)

g K111+ Ko+ Koo + ko = k; for0<x1<X,<L;
k(xy;L) = 0; in [O;L];
(1) : k(x1;x1) = O; in [O; L];
' ki(x1;Xx1) = §(L X1); in[O;L]:

with ki == @k, kii = @, x k.- Moreover, ifk is smooth enough
(Lipschitz is su cient), one can check that the same feedkdaw provides
for the initial nonlinear KdV control system (local) asynofit stability

with an exponential decay rate at least equal to The proof of the
existence ok follows related arguments to the ones introduced by D.
BoZkovi¢, M. Krstic and W. Liu in 2001 for the existencelofor the heat
equationy; yxx =0.



Estimates on the kernels and controllability

Shengquan Xiang recently proved the following estimates fo 1
p— p_—
1) ik jco(r) 6 e+ L)? and | jcocr 6 g1+ L) .

wherel is the kernel of the inverse transform. It allowed him to give
new proof of the null controlloability in small-time and tisenall-time
stabiliz;btign thanks to these estimates. One may wondem# could
replace by 72in (1).



Return to the initial KdV control system

(1) Vit Yx+ Yox +YYx=0;t2(0;T); x 2 (O;L);
y(£0)=0;y(tL)=0; yx(tL) = u(®)t 2 (0;T):

We assume that

r—.
2 2
2) L62N:= 2 %;kZN;IZN

Then the linearized control system aroufids controllable and the
nonlinear control system is locally controllable in srtiatle. We are
interested in the rapid exponential stabilization of thentinear system.



Rapid exponential stabilization of the initial KdV-cdntro
system

Theorem (JMC and Q. LU (2013))

Let us assume that 62 NFor every > 0, there existC > 0,r> 0and a
feedback lawy 7! u(y) such that, for this feedback law,

(1) YOtz 61 ) jy(iLzowL) 6 Ce 'jy(0)jLz.); 8t> O:




Proof of the rapid exponential stabilizability

Unfortunately the backstepping approach (i.e. Fredholmnsformations of
the second kind) is not working. We need to use more general
transformations:y 2 L2(0;L) 7! z 2 L2(0;L) is now de ned by

Z
1) z(x1) == y(x1) . k(x1;x2)y(x2)dxa:

(Every linear transformatioy 2 L?(0;L) 7! z 2 L?(0;L) can been written
in this form). Again, we want that the trajectory of

(2)  Ye+Yx+Yox =05 y(t0)=0;y(tL)=0; yx(t;L) = u(t);

R
with the feedback lawu(t) := 0" kx, (0; X2)y(t; X 2)dx2 is mapped into the
trajectory z = z(t;x), solution of the linear system

B) z+zx+zZxx + 2 =0;2z(10)=0; z(t;L)=0; z«(;L) =0:



Kernel equation

This property for the transformationy 7! z holds if (and only if)

3 Kign+ ki + kooo+ ko+ k = (X1 X2); on (0;L)?;
(1) . k(x1;0) = k(x1;L) = ko(x1;0) = ko(x1;L) =0 on (O;L);
" Kk(0;x2) = k(L;x2)=0 on (O;L);

where (X1 X») is the Dirac mass on the diagonal of the square
O;L] [OL]
Next step: Prove the existence of a solution to the kernelagigu (1).



How to prove the existencelof

Let us de ne an unbounded linear operatar: D(A)  L?(0;L)
I L2(0;L) as follows.

(1) D(A):=f";" 2H30O;L);" (0)="(L)=0;"«(0)="«(L)g;
(2) A= Tk T xk

The operatorA is a skew-adjoint operator and has compact resolvent.
Denote byfi g2z, ; 2 R, the eigenvalues oA, which are organized in
the following way:

3) 116 26 1<06 g6 16 26 ::::

Since the control is of dimension 1 and the linearized cdraystem is
controllable, all these eigenvalues are simple. Let usewtit gj>z for the
corresponding eigenfunctions withjj 2. ) =1 (j 2 Z). Itis well known
that f' j g2z constitutes an orthonormal basis &f(0; L).



The idea is to searck in the following form

X
1) K(X1;X2) = j (X1)" j(x2):
27

Then prove thaty 2 L2(0;L) 7! z 2 L2(0;L) de ned by
Z

2 z(x1) = y(X1) k(X1; X2)y(X2)dX2
0

is invertible.



A general result in nite dimension

We consider the following linear control system in nite dinsion
1) y = Ay + Bu;

where the state iy 2 R" and the control isu 2 R. We assume that
(2) the control system (1) is controllable.

Let 2 R. Let GL(n; R) be the set of invertible elements B ". We are
looking forT 2 GL(n; R) andK 2 R! " such that, ify = Tz and
u= Kz + v, then (1) is equivalent to

) z=(A Id)z + By,

where Id is the identity matrix ilR" ". Clearly, if suchT andK exists for
every 2 R the control systeny = Ay + Bu satis es the rapid
exponential stabilization property.



Existence and uniquenesg aindK

The equivalence betwegn= Ay + Bu andz = (A Id)z + Bv with
y= Tz andu = Kz + v holds if and only if

(1) AT +BK = TA T;
@) TB = B:

One has the following theorem.

Proposition (JMC (2015))

If y = Ay + Bu is controllable, there exists one and only one
(T;K) 2 GL(n;R) R! " such that(1) and (2) hold.
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Boundary conditions

Over ow (spillway)
Under ow (sluice)



1-D hyperbolic systems

Our hyperbolic control system is

1) yi + A(Y)yx = S(y); (x) 2 [0;T] [O;L];

where, at timet 2 [0; T], the state isx 2 [0;L] 7! y(t;x) 2 R". Let
y 2 R" be xed. Assume that := A(y ) hasn distinct real non zero
eigenvalues: after a suitable linear change of variables
= diag 1;::: ks k+1::ii; n) With

n<::< ke1 <0< (<:ii:< 4. forsomek 2f0; ;ng. The
term S(y) is the source term. We assume th8(y ) = 0. In this section
we even assume th& = 0. The caseS 6 0 is considered in the next
section (one speaks in this case of hyperbolic balance laved)
m:=n k. Fory2R", lety 2R™ andy, 2 R" ™ be such that

y

y= Ve

The control is part ofy. (t; 0) and part ofy (t;L).



Boundary conditions

y (tl) _ 5 vy (£0) . 1)
@ yet0) ¢ yey 12O

where
() y 2RM™andy: 2 R" ™ are de ned by

) y= Y
(i) the mapG:R"! R" is such that

y®d _g5 v O
Y+ (0) y+ (1)

Part of G is xed, part of G can be chosen in order to achieve the
exponential stability o¥ .

®3)



;OV

hot cold




Musical wind instruments
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Gas pipes
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compressor
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Electrical transmission lines

Transmission line
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Chromatography



Heat exchangers
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_ cold
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Control for navigable rivers

«4O0>» «F P> «E» « =



Successive pools of a navigable river
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The simplest 1-D hyperbolic system

We consider the simplest hyperbolic equation
) Yo Yx=0;x2(0;1);
under the boundary conditions

2 y(t; 1) = u(t);

where 2 (0;+1 ) . The control isu(t) 2 R. The goal is to produce a
feedback lawy 2 L2(0;L)? 7! u(y) 2 R such that, for the closed-loop
system, one has nite-time stability in the optimal time, veh is

1

It is very simple: just takingi(y) = 0 solves the problem.



(0;0)




Topt

(0;0)




(0;0)



A tutorial example showing that= 0 is not always the

best choice

We consider the control system

(1) yi+ qyi=0;y2  y2=0;yf ay2=0;x2(0;1); t> O;
2)  yi(t 0) = ay?(t; 0) + by3(t; 0); y2(t; 1) = ua(t); y3(t; 1) = ua(t);
©) yH0;x) = Y5(X); Y2(0;x) = Y5(X); y3(0;x) = y§(x);

where, at timet > O, the control is

(ur(t); u() = (y3(t; 1); y3(t; 1)) 2 R? and the state is

y(t; ) = (YAt );y2(@t; );y3(t; )Y 2 L2(0;1)3. The real numbers andb
are given. We assume that

(4) 0< 1;0< ,< g3

Let

(%) i=i;i2f1;2;3g:
i



If one uses the controls;(t) = ux(t) =0, one gets that

1) y(Ty; )=0;
with
(2 Ty= 1+ 2

Moreover ifa6 0 andb= 0, T, is optimal: there are initial data such that,
whatever are the controls one cannot redtlat a time smaller thanT

(see Li Tatsien's book in 2010 for more general situatioridpwever, as
proved by L. Hu in 2015 (in a more general framework}y & 0 one can
steer the control system t0 in time

3) To:=maxf 1+ 3; 2,g<Tq:

Let us do it with a feedback law. Note that; = u, = 0 is not working if
a6 0: in this case whatever 8< T < T ; there are initial data such, with
these controls, thay(T; ) 6 0. The idea is that we would like to have

4) (y'(t; 0) =) ay?(t; 0) + by(t; 0) = O:
as fast as possible. For that, we point out that
(5)  ay’(t0)+ by (t0) = ay’(t 3 3= 2)+ by’(t ;1)



Hence the idea is to use the feedback law
D vl =y D) =0;ui(t)= Y3t 1) = (a=hy*(t; s=2):

With this feedback law, one has

) yi(t;0)=0; 8t> 3;
€)) yitx)=0;8t> 3+ 1x
(4) y2(tx)=0; ift> 2 X g
(5) y3(t1)=0;8t> , 3
(6) yAtx)=0;8t> 5 gx:
In particular

7 y(t; )=0; 8t > Tq:



yA(t
, 1)
=0
;y°
(t;
1
) =
(a=
=Byt
y 3—
2)




yA(t
, 1)
=0
;y°
(t;
1
) =
(a=
=Byt
y 3—
2)




yA(t
, 1)
=0
;y°
(t;
1
) =
(a=
=Byt
y 3—
2)




yA(t
, 1)
=0
;y°
(t;
1
) =
(a=
=Byt
y 3—
2)




Comparaison of the two feedback laws

y2(t; 1) = 0 in both cases.
Y3t 1) = (azhy*(t; 3= 2) y3(t 1) =0




The general case

We consider then  n hyperbolic system
1) Y+ yx=0;t> 0;x2(0;1);

with = diag 1;:::; ki «k+1::::; n). We assume that
n<:.:< ki1 < 0< <:::< 1. The controls are

) ur(t) = Y€ (6 1) um (1) = YO8 1)
with m := n k. On the boundaryx = 0 the boundary condition is

3) 5y (6 0) = BY<*h; iy ( 0)

4) To:=maxf 1+ me1;ii; k+ meks ke 9if m>k;
(5) To:=maxf 1 m+ k+1::i0 k+ kem@if m<k:



Then one has the following theorem.

Theorem (JMC and Hoai-Minh Nguyen (2018))

Assume that, for everit 6 i 6 minfk;m 1g, thei i matrix formed
from the lasti columns and the lasit rows ofB is invertible. Then there
exists a linear feedback which yields the null-contrdilgbat the time To.
Moreover, for anyT < T, there exists an initial datum such that

y(T; ) 6 0O for every control.

This result also improves the optimal time for null contadility. The best
prior estimate for the null controllability was the time giv by L. Hu
(2015) in the casan > k: T; :=maxf x+ mn+1; k+19- One always hav
To 6 T1 and this inequality is strict ik > 1.
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