Control of linear and nonlinear systems subject to a random input delay

Delphine Bresch-Pietri

joint work with SiJia Kong

Webinar Control in Time of Crisis May 27, 2021

Time-Varving Del	avs are not necess	sarily FIFO	
000	000000	000	0000
Control design	Stability analysis	Numerical example	

Transport delays

"First-in/First-out" principle transportation of material

sudden variation : random delay

sudden variation : random delay

Control design	Stability analysis	Numerical example	
but non-Fl	FO have seldom l	heen studied	
mouthonin			

Time-varying delays are almost always assumed FIFO :

- either as a prerequisite of the analysis
- or as a consequence of the control design

except fast-varying delays and sampled-data systems (Fridman et al.)

Recent works have focused on piecewise differentiable delays :

- F. Mazenc, M. Malisoff, and S.-I. Niculescu. Stability and control design for time-varying systems with time-varying delays using a trajectory-based approach, SIAM Journal on Control and Optimization, 2017
- D. Bresch-Pietri, F. Mazenc and N. Petit, Robust compensation of a chattering time-varying input delay with jumps, in Automatica, 2018
- J. Choi and M. Krstic, Compensation of time-varying input delay for discrete-time nonlinear systems, IJRNC, 2016.

and neither	have stochastic	delavs	
000	000000	000	0000
Control design	Stability analysis	Numerical example	

Most of the works on Stochastic Differential Delay Equations do not consider a random delay

$$dx(t) = (Ax(t) + Bu(t - D(t)))dt + FdW_t$$

Only a few works consider the delay to be a random process in a control perspective :

piecewise constant process

H. T. Sykora, M. Sadeghpour, J. I. Ge, D. Bachrathy, and G. Orosz. *On the moment dynamics of stochastically delayed linear control systems*, IJRNC, 2020.

• affine term multiplied by a random boolean

K. Li and X. Mu. Predictor-based H∞ leader-following consensus of stochastic multi-agent systems with random input delay, Optimal Control Applications and Methods, 2021

• Markov process with a finite number of values : constant delay averaging

I. Kolmanovsky and T. Maizenberg, *Mean-square stability of nonlinear systems with time-varying, random delay.* Stochastic analysis and Applications, 2001.

Control design	Stability analysis	Numerical example	Nonlinear case
Problem stateme	ent		

We consider the linear time-invariant plant

$$\dot{X}(t) = AX(t) + BU(t - D(t))$$

in which X an \mathbb{R}^n -valued random variable and $U \in \mathbb{R}$.

Delay definition

D is a Markov process with the following properties :

- (1) $D(t) \in \{D_1, D_2, \dots, D_r\}$, with $0 < \underline{D} \le D_1 < D_2 < \dots < D_r \le \overline{D}$.
- (2) The transition probabilities $P_{ij}(t_1, t_2)$, which quantify the probability to switch from D_i at time t_1 to D_j at time t_2 ($(i, j) \in \{1, ..., r\}^2$, $t_2 \ge t_1 \ge 0$), are differentiable functions $P_{ij} : \mathbb{R}^2 \to [0, 1]$ satisfying

$$\sum_{j=1}^{r} P_{ij}(t_1, t_2) = 1, \quad (0 \le t_1 \le t_2)$$

000	0000000	000	0000	
Control design	Stability analysis			

Input delay compensation

Dynamics at stake

$$\dot{X}(t) = AX(t) + BU(t - D)$$

with $X \in \mathbb{R}^n$, *U* scalar and D > 0 constant. $\exists K \in \mathbb{R}^{1 \times n} A + BK$ Hurwitz.

Prediction-based control (Smith, 1959, FSA Manitius and Olbrot, 1979)

$$U(t) = KX_P(t+D) = K\left[e^{AD}X(t) + \int_{t-D}^t e^{A(t-s)}BU(s)ds\right]$$

yields an exact compensation of the input delay

Closed-loop form

 $\dot{X} = (A + BK)X(t)$

 \Rightarrow delay-free exponential convergence after D units of time

Implementability?

- $r^{-1}(t) \neq t + D(t) \Rightarrow$ need to predict future values of the delay
- Non-smooth delay in the stochastic case !

Robust delay	compensation		
Control design	Stability analysis	Numerical example	

Numerous delay-robustness properties have been obtained in the deterministic delay case for prediction-based control :

- N. Bekiaris-Liberis and M. Krstic, Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations, Automatica, 2013
- I. Karafyllis and M. Krstic, Delay-robustness of linear predictor feedback without restriction on delay rate. Automatica, 2013.
- S. Kong and D. Bresch-Pietri, *Constant time horizon prediction-based control for linear* systems with time-varying input delay, in Proc. of the 2020 IFAC World Congress

 \Rightarrow We propose to follow this trend in the stochastic delay context.

Robust compensation for linear systems

PDE transformations and Lyapunov analysis

3 Simulation results

Extension to nonlinear dynamics

Control design O●O	Stability analysis	Numerical example	Nonlinear case
Problem at stake	;		

We consider the linear time-invariant plant

$$\dot{X}(t) = AX(t) + BU(t - D(t))$$

in which X an \mathbb{R}^n -valued random variable and $U \in \mathbb{R}$.

Delay definition

D is a Markov process with the following properties :

(1)
$$D(t) \in \{D_1, D_2, \dots, D_r\}$$
, with $0 < \underline{D} \le D_1 < D_2 < \dots < D_r \le \overline{D}$.

(2) The transition probabilities $P_{ij}(t_1, t_2)$, which quantify the probability to switch from D_i at time t_1 to D_j at time t_2 ((*i*, *j*) $\in \{1, ..., r\}^2, t_2 \ge t_1 \ge 0$), are differentiable functions $P_{ij} : \mathbb{R}^2 \to [0, 1]$ satisfying

$$\sum_{j=1}^{r} P_{ij}(t_1, t_2) = 1, \quad (0 \le t_1 \le t_2)$$

Prediction-based	controller		
Control design OO●	Stability analysis	Numerical example	Nonlinear case

Constant horizon prediction

$$U(t) = K\left[e^{AD_0}X(t) + \int_{t-D_0}^t e^{A(t-s)}BU(s)ds
ight], \quad t \ge 0$$

in which *K* is a feedback gain such that A + BK is Hurwitz, and $D_0 \in [\underline{D}, \overline{D}]$.

Prediction-based	controller		
Control design OO●	Stability analysis	Numerical example	Nonlinear case

Constant horizon prediction

$$U(t) = K\left[e^{AD_0}X(t) + \int_{t-D_0}^t e^{A(t-s)}BU(s)ds
ight], \quad t \ge 0$$

in which *K* is a feedback gain such that A + BK is Hurwitz, and $D_0 \in [\underline{D}, \overline{D}]$.

Theorem

There exists a positive constant $\varepsilon^{\star}(K)$ such that, if

 $|D_0 - D_j| \leq \varepsilon^{\star}(K), \quad j \in \{1, ..., r\}$

there exist positive constants R and γ such that

 $\mathbb{E}_{[0,\Upsilon(0)]}[\Upsilon(t)] \leq R\Upsilon(0)e^{-\gamma t}$

with

$$\Upsilon(t) = |X(t)|^2 + \int_{t-\overline{D}-D_0}^t U(s)^2 ds$$

PDE transformations and Lyapunov analysis

3 Simulation results

Extension to nonlinear dynamics

	000000		
Control design	Stability analysis	Numerical example	

Stochastic delays are a random cascade of transport PDEs into an ODE

• Transport PDE representation for each delay value

$$v_j(x,t) = U(t+D_j(x-1))$$

000	000000	000	0000
Control design Stability analysis		Numerical example	

Stochastic delays are a random cascade of transport PDEs into an ODE

• Transport PDE representation for each delay value

$$v_j(x,t) = U(t+D_j(x-1))$$

With $\Lambda_D = diag(D_1, ..., D_r)$ and the random process $\delta(t) = e_i$ iff $D(t) = D_i$,

$$\begin{cases} \dot{X}(t) = AX(t) + B\delta(t)^{T}\mathbf{v}(0,t) \\ \Lambda_{D}\mathbf{v}_{t}(x,t) = \mathbf{v}_{x}(x,t) \\ \mathbf{v}(1,t) = \mathbf{1}U(t) \end{cases}$$

Control design	Stability analysis	Numerical example	
000	000000	000	0000

• Extended system with $\hat{v}(x,t) = U(t+D_0(x-1))$ and $\tilde{v} = v - \hat{v}\mathbf{1}$.

$$\begin{cases} \dot{\boldsymbol{X}}(t) = \boldsymbol{A}\boldsymbol{X}(t) + B\hat{\boldsymbol{v}}(0,t) + B\boldsymbol{\delta}(t)^{T}\tilde{\boldsymbol{v}}(0,t) \\ D_{0}\hat{\boldsymbol{v}}_{t}(x,t) = \hat{\boldsymbol{v}}_{x}(x,t) \\ \hat{\boldsymbol{v}}(1,t) = \boldsymbol{U}(t) \\ \Lambda_{D}\tilde{\boldsymbol{v}}_{t}(x,t) = \tilde{\boldsymbol{v}}_{x} - \Sigma_{D}\hat{\boldsymbol{v}}_{x} \\ \tilde{\boldsymbol{v}}(1,t) = \boldsymbol{0} \end{cases}$$

in which $\boldsymbol{\Sigma}_{D} = (\frac{D_1 - D_0}{D_0}, ..., \frac{D_r - D_0}{D_0})^{T}$

Control design	Stability analysis	Numerical example	
000	000000	000	0000

• Extended system with $\hat{v}(x,t) = U(t + D_0(x-1))$ and $\tilde{v} = v - \hat{v}\mathbf{1}$.

$$\begin{cases} \dot{\boldsymbol{X}}(t) = \boldsymbol{A}\boldsymbol{X}(t) + B\hat{\boldsymbol{v}}(0,t) + B\boldsymbol{\delta}(t)^{T}\tilde{\boldsymbol{v}}(0,t) \\ D_{0}\hat{\boldsymbol{v}}_{t}(x,t) = \hat{\boldsymbol{v}}_{x}(x,t) \\ \hat{\boldsymbol{v}}(1,t) = \boldsymbol{U}(t) \\ \Lambda_{D}\tilde{\boldsymbol{v}}_{t}(x,t) = \tilde{\boldsymbol{v}}_{x} - \Sigma_{D}\hat{\boldsymbol{v}}_{x} \\ \tilde{\boldsymbol{v}}(1,t) = \boldsymbol{0} \end{cases}$$

in which $\Sigma_D = (rac{D_1 - D_0}{D_0}, ..., rac{D_r - D_0}{D_0})^T$

• Backstepping transformation $(X, \hat{v}) \mapsto (X, w)$ s.t. w(1, t) = 0

$$w(x,t) = \hat{v}(x,t) - Ke^{AD_0 x} X(t) - D_0 \int_0^x Ke^{AD_0(x-y)} B\hat{v}(y,t) dy$$

Control design	Stability analysis	Numerical example	
000	000000	000	0000

• Extended system with $\hat{v}(x,t) = U(t + D_0(x-1))$ and $\tilde{v} = v - \hat{v}\mathbf{1}$.

$$\begin{cases} \dot{\boldsymbol{X}}(t) = \boldsymbol{A}\boldsymbol{X}(t) + B\hat{\boldsymbol{v}}(0,t) + B\boldsymbol{\delta}(t)^{T}\tilde{\boldsymbol{v}}(0,t) \\ D_{0}\hat{\boldsymbol{v}}_{t}(x,t) = \hat{\boldsymbol{v}}_{x}(x,t) \\ \hat{\boldsymbol{v}}(1,t) = \boldsymbol{U}(t) \\ \Lambda_{D}\tilde{\boldsymbol{v}}_{t}(x,t) = \tilde{\boldsymbol{v}}_{x} - \Sigma_{D}\hat{\boldsymbol{v}}_{x} \\ \tilde{\boldsymbol{v}}(1,t) = \boldsymbol{0} \end{cases}$$

in which $\Sigma_D = (rac{D_1 - D_0}{D_0}, ..., rac{D_r - D_0}{D_0})^T$

• Backstepping transformation $(X, \hat{v}) \mapsto (X, w)$ s.t. w(1, t) = 0

$$\begin{cases} \dot{X}(t) = (A + BK)X(t) + Bw(0, t) + \delta(t)^{T}\tilde{v}(0, t) \\ D_{0}w_{t}(x, t) = w_{x}(x, t) - D_{0}Ke^{AD_{0}x}B\delta(t)^{T}\tilde{v}(0, t) \\ w(1, t) = 0 \\ \Lambda_{D}\tilde{v}_{t}(x, t) = \tilde{v}_{x} - \Sigma_{D}h(w_{x}, w, X) \\ \tilde{v}(1, t) = 0 \end{cases}$$

Enders de la seconda de second	al de la classificación de la contra de la	and the second sec	
000	000000	000	0000
Control design	Stability analysis		

• Final extended target system with $\mu(x,t) = U(t - D_0 + \overline{D}(x-1))$

$$\begin{cases} \dot{X}(t) = (A + BK)X(t) + Bw(0, t) + B\delta(t)^{T}\tilde{\mathbf{v}}(0, t) \\ D_{0}w_{t}(x, t) = w_{x}(x, t) - D_{0}Ke^{AD_{0}x}B\delta(t)^{T}\tilde{\mathbf{v}}(0, t) \\ w(1, t) = 0 \\ \Lambda_{D}\tilde{\mathbf{v}}_{t}(x, t) = \tilde{\mathbf{v}}_{x} - \Sigma_{D}h(\mu, w, X) \\ \tilde{\mathbf{v}}(1, t) = \mathbf{0} \\ \overline{D}\mu_{t}(x, t) = \mu_{x}(x, t) \\ \mu(1, t) = KX(t) + w(0, t) \end{cases}$$

in which $\Sigma_D = (\frac{D_1 - D_0}{D_0}, ..., \frac{D_r - D_0}{D_0})^T$ • Define its state as $\Psi = (X, w, \tilde{\mathbf{v}}, \mu)$ belonging to

 $\mathbb{R}^n \times \pounds_2([0,1],\mathbb{R}) \times \pounds_2([0,1],\mathbb{R}^r) \times \pounds_2([0,1],\mathbb{R}) \triangleq \mathcal{D}_{\Psi}$

Control design		Stabilit	Stability analysis		Numerical example					
000			000	000			000			0000

The closed-loop and the target systems are well-posed

Weak solution

By a weak solution to the closed-loop system, we refer to a $\mathbb{R}^n \times \mathcal{L}_2([-\overline{D}, 0], \mathbb{R}) \times \mathbb{R}$ -valued random variable $(X(X_0, t), U_t(U_0, \cdot), D(t))$, the realizations of which satisfy an integral form of the closed-loop dynamics.

Lemma

For every initial condition $(X_0, U_0) \in \mathbb{R}^n \times \mathcal{L}_2([-\overline{D}, 0], \mathbb{R})$, the closed-loop system has a unique weak solution defined as

$$X(t) = e^{At}X(0) + \int_0^t e^{A(t-s)}BU(s-D(s))ds$$

Consequently, for each initial condition in \mathcal{D}_{Ψ} , the target system also has a unique weak solution Ψ .

 (Ψ, δ) thus defines a continuous-time Markov process.

Control design	Stability analysis	Numerical example	
	0000000		
Stability analys	ie		

Lyapunov functional candidate

$$V(\Psi) = X^{T} P X + b D_{0} \int_{0}^{1} (1+x) w(x)^{2} dx + c \sum_{l=1}^{r} \int_{0}^{1} (1+x) ((e_{l} \cdot \mathbf{D})^{T} \tilde{\mathbf{v}}(x))^{2} dx + d \overline{D} \int_{0}^{1} (1+x) \mu(x)^{2} dx \quad \text{with } b, c, d > 0 \text{ and } P \text{ sol. to a Lyapunov eq}$$

Infinitesimal Operator

$$LV(\Psi(t)) = \limsup_{\Delta t \to 0^+} \frac{1}{\Delta t} \Big(\mathbb{E}_{[t,\Psi(t)]} [V(\Psi(t+\Delta t))] - V(\Psi(t)) \Big)$$

Constant delay averaging (Kolmanovsky) :

$$LV(t) = \sum_{j=1}^{r} P_{ij}(0,t) \frac{dV}{d\Psi}(\Psi(t)) \underbrace{f_{j}(\Psi(t))}_{\text{dynamics for } \delta(t)=\delta_{j}} + \underbrace{\sum_{j=1}^{r} \frac{\partial P_{ij}}{\partial t}(0,t)}_{=\frac{\partial}{\partial t} \sum_{j=1}^{r} P_{ij}(0,t)=0} V(t)$$

000	0000000	000	0000
Stability analysis			

Lemma

Assume there exist a positive constant $\boldsymbol{\epsilon}$ such that

$$|D_0 - D_j| \leq \varepsilon, \quad j \in \{1, ..., r\}$$

Then, there exist $b, c, d \in \mathbb{R}^{*\,3}_+$ which are independent of ε such that the Lyapunov functional *V* satisfies

$$LV(t) \leq -(\eta - g(\varepsilon))V(t), \quad t \geq \overline{D}$$

with the function $g: \mathbb{R}_+ \to \mathbb{R}_+$ satisfying $\lim_{\epsilon \to 0} g(\epsilon) = 0$.

Stability analysis			
Control design	Stability analysis 000000●	Numerical example	Nonlinear case

• As $\lim_{\epsilon \to 0} g(\epsilon) = 0$, there exists $\epsilon^* > 0$ such that $\eta - g(\epsilon) = \eta_0 > 0$ for $\epsilon < \epsilon^*$. and hence

$$LV(t) \leq -\eta_0 V(t), \quad t \geq \overline{D}$$

• According to Dynkin's formula, one obtains for $\epsilon < \epsilon^*$

$$\mathbb{E}_{(0,\Psi(0))}[V(t)] - \mathbb{E}_{(0,\Psi(0))}[V(\overline{D})] \leq \mathbb{E}_{(0,\Psi(0))}\left[\int_{\overline{D}}^{t} -\eta_0 V(s) ds\right]$$

And, applying Gronwall's inequality,

$$\mathbb{E}_{(0,\Psi(0))}[V(t)] \leq \mathbb{E}_{(0,\Psi(0))}[V(\overline{D})]e^{-\eta_0(t-\overline{D})}$$

• We conclude by using the fact that the system does not escape in finite time and that *V* and *T* are equivalent.

Robust compensation for linear systems

PDE transformations and Lyapunov analysis

Simulation results

Extension to nonlinear dynamics

Control design	Stability analysis	Numerical example	
		000	
Tov example			

Dynamics under consideration

$$\dot{X}(t) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} X(t) + \begin{pmatrix} 0 \\ 1 \end{pmatrix} U(t - D(t))$$

$$U(t) = K \left[e^{A U_0} X(t) + \int_{t - D_0} e^{A(t - s)} B U(s) ds \right], \quad t \ge 0$$

with the feedback gain $K = -\begin{bmatrix} 1 & 2 \end{bmatrix}$ s.t. $\lambda(A + BK) = -0.5000 \pm 1.3229i$. The initial conditions are chosen as $X(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and U(t) = 0, for $t \le 0$.

Random delay

5 different delay values $(D_1, D_2, D_3, D_4, D_5) = (0.5, 0.75, 1, 1.25, 1.5)$ with transition probabilities satisfying the Kolmogorov equation

$$\frac{\partial P_{ij}(s,t)}{\partial t} = -c_j(t)P_{ij}(s,t) + \sum_{k=1}^r P_{ik}(s,t)v_{kj}(t), s < t$$
$$P_{ij}(s,s) = 1, \quad \forall i = j, \quad P_{ij}(s,s) = 0, \quad \forall i \neq j$$

in which v_{ij} and $c_j = \sum_{k=1}^r v_{jk}$ are positive-valued functions s. t. $v_{ii}(t) = 0$.

Control design	Stability analysis	Numerical example	Nonlinear case
Tov example			

$D_0 = 1$, Monte-Carlo simulations with 100 trials

Control design	Stability analysis	Numerical example	
		000	0000
-			
lov example			

$D_0 = 1.25$, Monte-Carlo simulations with 100 trials

Robust compensation for linear systems

2 PDE transformations and Lyapunov analysis

3 Simulation results

Control design	Stability analysis	Numerical example	Nonlinear case
Problem at	stake		

We consider the nonlinear plant

$$\dot{X}(t) = f(X(t), U(t - D(t)))$$

in which *X* an \mathbb{R}^n -valued random variable and $U \in \mathbb{R}$.

Delay definition

D is a Markov process with the following properties :

(1)
$$D(t) \in \{D_1, D_2, \dots, D_r\}$$
, with $0 < \underline{D} \le D_1 < D_2 < \dots < D_r \le \overline{D}$.

(2) The transition probabilities $P_{ij}(t_1, t_2)$, which quantify the probability to switch from D_i at time t_1 to D_j at time t_2 ((*i*, *j*) $\in \{1, ..., r\}^2, t_2 \ge t_1 \ge 0$), are differentiable functions $P_{ij} : \mathbb{R}^2 \to [0, 1]$ satisfying

$$\sum_{j=1}^{r} P_{ij}(t_1, t_2) = 1, \quad (0 \le t_1 \le t_2)$$

Control design	Stability analysis	Numerical example	Nonlinear case
Problem at s	stake		

We consider the nonlinear plant

$$\dot{X}(t) = f(X(t), U(t - D(t)))$$

in which *X* an \mathbb{R}^n -valued random variable and $U \in \mathbb{R}$.

Assumption 1

The dynamics $\dot{X} = f(X, U)$ with U scalar is strongly forward complete.

Control design	Stability analysis	Numerical example	Nonlinear case
Problem at stake	Э		

We consider the nonlinear plant

$$\dot{X}(t) = f(X(t), U(t - D(t)))$$

in which *X* an \mathbb{R}^n -valued random variable and $U \in \mathbb{R}$.

Assumption 2

There exist a class C^1 feedback law κ and a basin of attraction $\mathcal{A} \subset \mathbb{R}^n$ such that, for all $X(0) \in \mathcal{A}$, the plant $\dot{X} = f(X(t), \kappa(X(t)))$ is exponentially stable.

Prediction-based control law

$$egin{aligned} & U(t) = \kappa(\mathcal{P}(t)) \ & \mathcal{P}(heta) = X(t) + \int_{t-\mathcal{D}_0}^{ heta} f(\mathcal{P}(s), U(s)) ds \,, \quad t-\mathcal{D}_0 \leq heta \leq t \end{aligned}$$

Control design	Stability analysis	Numerical example	Nonlinear case OO●O

Robust compensation

Theorem

For any compact $C \subset A$, there exist positive constants p^* and $\epsilon^*(K)$ such that, if

$$|D_0 - D_j| \le \epsilon^{\star}(\mathcal{K}), \quad j \in \{1, ..., r\} \text{ and } \Upsilon(0) \le \rho^{*}$$

there exist positive constants R and γ such that

$$\mathbb{E}_{[0,\Upsilon(0)]}[\Upsilon(t)] \leq R\Upsilon(0)e^{-\gamma t}$$

with

$$\Upsilon(t) = |X(t)|^2 + \int_{t-\overline{D}-D_0}^t U(s)^2 ds$$

NB: Assumption 2 is not restrictive in the sense that some asymptotically stable systems have zero delay-margin such as [L. Praly's textbook]

$$x_1 = x_2$$

 $\dot{x}_2 = -x_1(t-D) - x_2^3$

For D = 0, the origin is asymptotically stable but is unstable for any D > 0.

Control design	Stability analysis	Numerical example	Nonlinear case
Perspectives			

This work is the subject of

- a submitted Automatica paper
- a second journal paper under preparation

Future works

- How to distinguish between delay distributions?
- How to adapt the prediction horizon to the current delay distribution?
- How to analyze the influence of the feedback gain and select it?
- Extension to a continuum set of delays?
- Methodology of stability analysis for cascaded PDEs or PDE-ODE.

Thank you for your attention !