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Time-Varying Delays are not necessarily FIFO...

@ Transport delays

“First-in/First-out” principle D(t)<1,t>0

transportation of material

> Bath/shower > Blending > Recycle loops
L &72
@ Communication delay
Paquets entrants : 14 345872 PAQUETS Données regues : 8,73 Go
Paquets sortants : 16188961 | Données envoyées : 5,30 Go
Entrée paquets/s : 3 T A Al - 4 Données regues/s : 612 octets
Sortie paquets/s : 3 \i‘ \[ V Données envoyées/s : 631 octets

sudden variation : random delay
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...but non-FIFO have seldom been studied...

Time-varying delays are almost always assumed FIFO :
@ either as a prerequisite of the analysis
@ or as a consequence of the control design
except fast-varying delays and sampled-data systems (Fridman et al.)

Recent works have focused on piecewise differentiable delays :

120}
@ F. Mazenc, M. Malisoff, and S.-I. Niculescu. Stability and control design for
time-varying systems with time-varying delays using a trajectory-based

approach, SIAM Journal on Control and Optimization, 2017 \ /’
I

@ D. Bresch-Pietri, F. Mazenc and N. Petit, Robust compensation of a |
chattering time-varying input delay with jumps, in Automatica, 2018 !

@ J. Choi and M. Krstic, Compensation of time-varying input delay for ~_
discrete-time nonlinear systems, IJRNC, 2016.
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...and neither have stochastic delays.

Most of the works on Stochastic Differential Delay Equations do not consider
a random delay

dx(t) =(Ax(t) + Bu(t — D(t)))t + FdW,

Only a few works consider the delay to be a random process in a control
perspective :

@ piecewise constant process
H. T. Sykora, M. Sadeghpour, J. I. Ge, D. Bachrathy, and G. Orosz. On the moment
dynamics of stochastically delayed linear control systems, IJRNC, 2020.

@ affine term multiplied by a random boolean
K. Li and X. Mu. Predictor-based He leader-following consensus of stochastic multi-agent
systems with random input delay, Optimal Control Applications and Methods, 2021

@ Markov process with a finite number of values : constant delay averaging
I. Kolmanovsky and T. Maizenberg, Mean-square stability of nonlinear systems with
time-varying, random delay. Stochastic analysis and Applications, 2001.
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Problem statement

We consider the linear time-invariant plant
X(t) =AX(t)+ BU(t— D(t))

in which X an R"-valued random variable and U € R.

Delay definition

D is a Markov process with the following properties :
(1) D(t) € {Dy,Ds,...,D;},with0 <D< Dy < Do < ... < D, < D.
(2) The transition probabilities Pj(t;,t), which quantify the probability to
switch from D; at time t; to Dj at time & ((i,j) € {1,...,r}?, o >t > 0),
are differentiable functions Pj : R? — [0, 1] satisfying

r

ZP;,-(t1,t2):1, (0<t <tb)
j=1
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Input delay compensation

Dynamics at stake

X(t) =AX(t) + BU(t— D)

with X € R", U scalar and D > 0 constant.
JK € R " A+ BK Hurwitz.

Prediction-based control (Smith,1959, FSA Manitius and Olbrot, 1979 )
U(t) =KXp(t+ D) = K [ADX +/ A=) By(s)ds

yields an exact compensation of the input delay

Closed-loop form

X = (A+BK)X(1)
= delay-free exponential convergence after D units of time
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Compensation of a time-varying delay

X(t) = AX+BU(r(t)) with r(t)=t—D(t)

Time-varying prediction horizon

Exact compensation is obtained with

u(t) = KX(r (1))

if@ D is continuously differentiable and bounded
Q risinvertible (i.e. |D| < 1)

M. Nihtila. Finite pole assignment for systems with time-varying input delays. CDC, 1991

Implementability ?

o r'(t)#t+D(t) = need to predict future values of the delay
@ Non-smooth delay in the stochastic case!
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Robust delay compensation

Numerous delay-robustness properties have been obtained in the
deterministic delay case for prediction-based control :

@ N. Bekiaris-Liberis and M. Krstic, Robustness of nonlinear predictor feedback laws to
time-and state-dependent delay perturbations, Automatica, 2013

@ |. Karafyllis and M. Krstic, Delay-robustness of linear predictor feedback without restriction
on delay rate. Automatica, 2013.

@ S. Kong and D. Bresch-Pietri, Constant time horizon prediction-based control for linear
systems with time-varying input delay, in Proc. of the 2020 IFAC World Congress

= We propose to follow this trend in the stochastic delay context.

8/26



0 Robust compensation for linear systems
9 PDE transformations and Lyapunov analysis
e Simulation results

Q Extension to nonlinear dynamics



0 Robust compensation for linear systems



Control design
oeo

Problem at stake

We consider the linear time-invariant plant

X(t) =AX(t) + BU(t — D(t))

in which X an R"-valued random variable and U € R.

D is a Markov process with the following properties :

(1) D(t) € {Dy,D,,...,D;},with0 < D< Dy < D < ... < D, < D.

(2) The transition probabilities Pj(t;,t), which quantify the probability to
switch from D; at time t; to Dj at time & ((i,j) € {1,...,r}2, t- >t > 0),
are differentiable functions Pj : R? — [0, 1] satisfying

r

Y Pi(te)=1, (0<t<t)
j=1
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Control design
ocoe

Prediction-based controller

Constant horizon prediction
t
U(t)—K{eADOX(t)+ / A=) By(s)ds| , t>0
t—Dg

in which K is a feedback gain such that A+ BK is Hurwitz, and Dy € [D, D).
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Control design
ocoe

Prediction-based controller

Constant horizon prediction

t
U(t)—K{eADOX(tH/ eBU(s)ds| , t>0
t*DO

in which K is a feedback gain such that A+ BK is Hurwitz, and Dy € [D, D].

Theorem

There exists a positive constant €(K) such that, if
|Do— Dl <e*(K), je{t,..,r}
there exist positive constants R and 7y such that
Epo,roy[T(8)] < RT(0)e™"

with .
(1) = [X()]2 + /t_ﬁ_D U(s)2ds
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Stability analysis
(o] lelele]e]e]

Stochastic delays are a random cascade of transport PDEs into an ODE

@ Transport PDE representation for each delay value

vi(x,t) =U(t+ Dj(x — 1))

)
—
speed 1/D; U(t — D1) = v1(0,t)
R Emm— | [ —
i
1/D3 U(t — D3) = v3(0,t) ﬂ\;
| o ODE
1/D, -
s U(t = D,) = v,(0.t)
‘ |
r=1 z=0
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Stability analysis
(o] lelele]e]e]

Stochastic delays are a random cascade of transport PDEs into an ODE

@ Transport PDE representation for each delay value

vi(x,t) =U(t+ Dj(x — 1))

i)

-

e

speed 1/D, Ult— Dy) = 01(0,1)
|

|
Ly U(t — D3) = v3(0,)
| —e ODE

Ut — D,) = v,(0,1)

e

k i
=1 =0

With Ap = diag(Ds, ..., D;) and the random process 8(t) = e; iff D(t) = D;,

X(t) = AX(t) + B5(t) Tv(0, 1)
Apvi(x, t)=vx(x,t)
v(1,t)=1U(t)
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Stability analysis
[e]e] lele]e]e]

Extended system and backstepping transformation

@ Extended system with V(x.t) = U(t+ Do(x —1)) and ¥ = v — 1.

X(t) = AX(t) + BU(0,1)+B3(t) (0, 1)

inwhich Xp = (252, ., 2527
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Stability analysis
[e]e] lele]e]e]

Extended system and backstepping transformation

@ Extended system with V(x.t) = U(t+ Do(x —1)) and ¥ = v — 1.

Do

L Dy —D D,—D
in which ¥p = (252, ..., 250)7
@ Backstepping transformation (X, ) — (X, w) s.t. w(1,t) =0

X
w(x, t) =0(x, 1) — Ke"P¥ X (t) — Do / KA By (y, 1) dly
0
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Stability analysis
[e]e] lele]e]e]

Extended system and backstepping transformation

@ Extended system with ¥(x. 1) = U(t+ Do(x —1)) and ¥ = v — /1.

X(t) = AX(t) + BU(0.1)+B3(t) T7(0,1)
X, t)= Ux(x,1)

in which ¥p = (&D;ODO““’ DrDDo)T
@ Backstepping transformation (X, V) — (X,w) s.t. w(1,t) =0
X(t) = (A+ BK)X(t)+Bw(0,t)+8(1) "0(0,1)
Dowi(x, t)= wx(x, t)—DoKe DX B3 () 4(0, 1)
w(1,t)=0
AD\NII(X-, f): \7)( — ZDh(WX7 W7X)
V(1,6)=0
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Stability analysis
[e]e] lele]e]e]

Extended system and backstepping transformation

e Final extended target system with «(x, 1) = U (1 — Do+ D(x — 1))

X(t) = (A+BK)X(t) + Bw(0,t) + B3(t) (0, t)
Dowi(x, t)= wy(x, t)—DoKe*P* B3 (1) T4 (0, t)

in which ¥p = (252, 252)7

@ Define its state as W = (X, w,V,u) belonging to

R" x L([0,1],R) x Lg([0,1],R") x Lg([0,1],R) £ Dy
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Stability analysis
[e]e]e] Jelele]

The closed-loop and the target systems are well-posed

Weak solution

By a weak solution to the closed-loop system, we refer to a
R" x £,([-D,0],R) x R-valued random variable (X(Xo, t), Us(Uy, -), D(t)),
the realizations of which satisfy an integral form of the closed-loop dynamics.

Lemma

For every initial condition (Xp, Up) € R" x L,([—D,0],R), the closed-loop
system has a unique weak solution defined as

X(t) = e X(0) + /0 A=) BU(s — D(s))ds

Consequently, for each initial condition in Dy, the target system also has a
unique weak solution W.

N,

(W, d) thus defines a continuous-time Markov process.
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Stability analysis
[e]e]e]e] Tele]

Stability analysis

Lyapunov functional candidate

V(\IJ):XTPX+bDo/(1+x dx+c):/ (1+x)((e-D)T9(x))ax

]
+ dﬁ/ (1+x)u(x)?dx  with b,c,d > 0 and P sol. to a Lyapunov eq.
0

Infinitesimal Operator

LY(W(0) = limsup - (B VW (t+80)] - V(¥(2)

At—0t

Constant delay averaging (Kolmanovsky) :

s av -
Vt):j;Py(O,t)W(W(t)) W)+ =00 V()

dynamics for §(t)=§;  “~—~——
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Stability analysis
0000080

Stability analysis

Lemma
Assume there exist a positive constant € such that

|Do—Dj| <e, je{1,..,r}

Then, there exist b, c,d € Rf which are independent of € such that the
Lyapunov functional V satisfies

LV(t) < —(m—g(e)V(t), t=D

with the function g : R, — R satisfying lime_,0 g(€) = 0.
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Stability analysis
O00000e

Stability analysis

@ As limg_,0 g(€) = 0, there exists €* > 0 such that 1 — g(€) =mno > 0 for
€ < €*. and hence
LV(t) < -moV(t), t>D

@ According to Dynkin’s formula, one obtains for € < €*

o t
Ewo)V(0] - By VD) < By | [} ~noV(s)e

And, applying Gronwall’s inequality,

E(o,w(on[V(1)] < Eo u(op[V(D)]e ™)

@ We conclude by using the fact that the system does not escape in finite
time and that V and T are equivalent.
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e Simulation results



Numerical example
oeo

Toy example

Dynamics under consideration
X(t) = ( _01 1 )X(t)+< (1) >U(t—D(t))

u(t) = { AD°X(1‘)+/ A=9)By(s )ds} ., t>0

with the feedback gain K = — [1 2] s.t. A(A+ BK) = —0.5000 - 1.3229i. The initial
conditions are chosen as X(0) = [1 0]7 and U(t) =0, for t < 0.

Random delay

| \

5 different delay values (D1, D2, D3, Ds, D5) = (0.5,0.75,1,1.25,1.5) with transition
probabilities satisfying the Kolmogorov equation

IP;(s, 1) r
Uait = —q(t)Pj(s,1) +k; Pi(s, t)vii(1),s < t
Pi(s,;s) = 1, Vi=j, Pj(s,s)=0, Vi#j

in which vj; and ¢; = Y4 Vjx are positive-valued functions s. t. v;i(t) =0

v
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Toy example

Dy = 1, Monte-Carlo simulations with 100 trials

by NGNS




Toy example

Dy = 1.25, Monte-Carlo simulations with 100 trials
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0 Extension to nonlinear dynamics



Nonlinear case

[e] Jele]

Problem at stake

We consider the nonlinear plant

X(t) =H(X(1). U(t - D(1)))

in which X an R"-valued random variable and U € R.

D is a Markov process with the following properties :

(1) D(t) € {Dy,D,,...,D;},with0 < D< Dy < D < ... < D, < D.

(2) The transition probabilities Pj(t;,t), which quantify the probability to
switch from D; at time t; to Dj at time & ((i,j) € {1,...,r}2, t- >t > 0),
are differentiable functions Pj : R? — [0, 1] satisfying

r

Y Pi(te)=1, (0<t<t)
j=1
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Nonlinear case
[e] Jele]

Problem at stake

We consider the nonlinear plant

X(t) =H(X(1). U(t - D(1)))

in which X an R"-valued random variable and U € R.

The dynamics X = f(X, U) with U scalar is strongly forward complete.
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Nonlinear case
[o] lele}

Problem at stake

We consider the nonlinear plant

X(t) =H(X(1). U(t - D(1)))

in which X an R"-valued random variable and U € R.

There exist a class C’ feedback_law K and a basin of attraction 4 C R" such
that, for all X(0) € 4, the plant X = f(X(t),%(X(t))) is exponentially stable.

Prediction-based control law
u(t) = x(P(t))

+/ U(s))ds, t—Dy<8<t
Do

24/26



Nonlinear case
[e]e] le}

Robust compensation

Theorem

For any compact C C 4, there exist positive constants p* and €*(K) such
that, if
Do~ D <€(K), j€{1,.or} and T(0)<p’

there exist positive constants R and y such that
Ep,roy[T(t)] < RT(0)e ™

with

T(t) = t)|2+/ U(s)?ds

NB : Assumption 2 is not restrictive in the sense that some asymptotically
stable systems have zero delay-margin such as [L. Praly’s textbook]

X1 =Xp
).(2 Z—X1(t—D)—X23

For D = 0, the origin is asymptotically stable but is unstable for any D > 0.

25/26



Nonlinear case
oooe

Perspectives

This work is the subject of
@ a submitted Automatica paper
@ a second journal paper under preparation

How to distinguish between delay distributions ?

How to adapt the prediction horizon to the current delay distribution ?
How to analyze the influence of the feedback gain and select it ?
Extension to a continuum set of delays ?

Methodology of stability analysis for cascaded PDEs or PDE-ODE.

Thank you for your attention!
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