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Introduction to the problem

The averaged controllability problem

We study the controllability properties of the system:
yt − α∆y = f 1G0 , in (0,T )× G ,

y = 0, on (0,T )× ∂G ,
y(0, ·) = y0, on G ,

(1)

for α a positive random variable of density ρ. We cannot expect to
control all the possible realizations (consider, for instance, the case
in which α→ 0), so we seek to control the average. This problem
is relevant in applications in which the control has to be chosen
independently of the random value, in a robust way.
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Introduction to the problem

The averaged observability problem

As usual, there is an equivalence between the averaged
controllability of (1) and the averaged observability in G0 of the
time-reversed adjoint system:

ut − α∆u = 0, in (0,T )× G ,

u = 0, on (0,T )× ∂G ,
u(0, ·) = φ, on G .

(2)

We say that (2) have the averaged unique continuation property in
G0 ⊂ G if ũ = 0 in (0,T )× G0 implies that φ = 0. Similarly, we
say that (2) is averaged null observable in G0 ⊂ G if for all
φ ∈ L2(G ):

‖ũ(T , ·;φ)‖L2(G) ≤ C‖ũ(·;φ)‖L2((0,T )×G0).
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Introduction to the problem

Known observability results

Theorem (Coulson, Gharesifard, Lü, Mansouri, Zuazua)

Let α be a random variable with a Riemann integrable density
function ρ such that supp(ρ) ⊂ [αmin,+∞) for some αmin > 0.
Then, system (2) is null observable in average.

Their result leaves an interesting open question:
What happens if we allow the random variable to vanish; that is, if

we allow 0 ∈ supp(ρ)?
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Introduction to the problem

The dynamics has a fractional nature when G = Rd

In order to illustrate the effect of averaging in the dynamics, let us
study the dynamics of (2) when G = Rd . The Fourier transform of
the average of the fundamental solutions is given by:∫ +∞

0
exp(−α|ξ|2t)ρ(α)dα;

i.e. the Laplace transform of ρ evaluated in |ξ|2t. In particular, for

r ∈ (0, 1) if ρ(α) ∼0+ e−Cα
− r

1−r
we have that:∫ +∞

0
exp(−α|ξ|2t)ρ(α)dα ∼ exp(−C |ξ|2r tr )

when |ξ|2t → +∞.
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Introduction to the problem

Similarities when G = Rd and when G is a bounded
domain

The dynamics may also be fractional in bounded domains. Indeed,
in bounded domains the Laplace transform of the density also
appears when considering the Fourier representation:

ũ(t, x ;φ) :=

∫ +∞

0
u(t, x ;α, φ)ρ(α)dα

=
∑
i∈N

∫ +∞

0
e−αλi tρ(α)dα〈φ, ei 〉L2(G)ei (x).
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Introduction to the problem

A qualitative description of the expectable results

I (2) has the unique continuation in average

I (2) is null observable in average if and only if ρ is sufficiently
small near 0. In fact, the threshold density functions are those
which near 0 satisfy:

ρ(α) ∼ e−α
−1
.
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Introduction to the problem

An illustration of some density functions

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10 -5

Averaged controls for the heat equation



Introduction to the problem Main results: rigorous statements and proofs. Some numerical simulations

Main results: rigorous statements and proofs.

Main results: rigorous statements and proofs.

Averaged controls for the heat equation



Introduction to the problem Main results: rigorous statements and proofs. Some numerical simulations

Main results: rigorous statements and proofs.

Main result: averaged unique continuation

Theorem

Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain, and
ρ = 1(0,1) or ρ be a density function which satisfies:

− d

ds
ln

(∫ +∞

0
e−sαρ(α)dα

)
=

∫ +∞
0 e−sααρ(α)dα∫ +∞
0 e−sαρ(α)dα

& sr−1 (3)

for some r ∈ (0, 1]. Then, system (2) satisfies the averaged unique
continuation property in G0.

Examples: density functions satisfying ρ(α) ∼0+ e−Cα
− r

1−r
for

r ∈ (0, 1)
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Main results: rigorous statements and proofs.

Proof of the unique continuation when ρ = 1(0,1)

The proof is based on explicit computations:

ũ(t, x ;φ) =
∑
i∈N

∫ 1

0
e−λiαt〈φ, ei 〉ei (x)dα =

1

t

∑
n∈N

1

λi

〈φ, ei 〉ei (x)−
∑
n∈N

e−λi t

λi

〈φ, ei 〉ei (x)


=

1

t

−∆−1
φ +

∑
i∈N

e−λi t〈∆−1
φ, ei 〉ei (x)

 .
Consequently, from

∫ T

0

∫
G0
|ũ(t, x ;φ)|2 = 0 we find that:

−∆−1φ+
∑
i∈N

e−λi t〈∆−1φ, ei 〉ei (x) = 0 in (0,T )× G0,

which differentiating in time implies that:∑
i∈N

e−λi t〈φ, ei 〉ei (x) = 0 in (0,T )× G0.

Hence, φ = 0 from the unique continuation of the heat equation.
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Main results: rigorous statements and proofs.

Unique continuation for density functions ρ decaying
exponentially when α→ 0 (i)

The proof follows from the analiticity of the averaged dynamics:

Proposition

Let G be a Lipschitz domain, α any positive random variable and φ ∈ L2(G).
Then, the function:

U : t ∈ (0,∞)→ ũ(t, ·;φ) ∈ L2(G)

is analytic.

This follows from the analiticity of the heat semigroup.

Averaged controls for the heat equation



Introduction to the problem Main results: rigorous statements and proofs. Some numerical simulations

Main results: rigorous statements and proofs.

Unique continuation for density functions ρ decaying
exponentially when α→ 0 (ii)

Let us now prove that from ũ = 0 in (0,T )× G0 we obtain that
φ = 0. From the analiticty we obtain that ũ = 0 in (0,∞)×G0. In
addition, by considering the limit when t →∞ we obtain that if
φ 6= 0 there is an eigenfunction of the Laplacian null in G0, which
is false.
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Main results: rigorous statements and proofs.

Main results: averaged null observability (i)

Theorem
Let G ⊂ Rd be a Lipschitz locally star-shaped domain, G0 ⊂ G be a
subdomain, T > 0 and α be a random variable whose density ρ satisfies that
there is some and r ∈ (1/2, 1] such that:

− d

ds
ln

(∫ +∞

0

e−sαρ(α)dα

)
=

∫ +∞
0

e−sααρ(α)dα∫ +∞
0

e−sαρ(α)dα
& s r−1. (4)

Then, system (2) is null observable in average. In addition, there are T0,C > 0
such that for all T ∈ (0,T0] we have that:

K(G ,G0, ρ,T ) ≤ CeCT
−(2r−1)−1

.

Here K is the cost of the null averaged observability.

Examples: ρ(α) ∼0+ e−Cα
− r

1−r
for r ∈ (1/2, 1).
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Main results: rigorous statements and proofs.

Proof of the averaged null observability

The result can be proved by following an iteration method of the
type Lebeau-Robbiano. The averaged dynamics does not satisfy
the semigroup property, but this is a minor problem as averaging
does not alter the decay rate. Indeed, the inequality (4) implies
that: ∫ +∞

0
e−t2λαρ(α)dα ≤ e−cλ

r (t2−t1)

∫ +∞

0
e−t1λαρ(α)dα,

which can be proved by an easy casuistic.
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Main results: rigorous statements and proofs.

Main results: averaged null observability (ii)

Theorem

Let G ⊂ Rd be a Lipschitz domain, G0 ⊂ G be a subdomain such
that G0 6= G and α be a random variable whose density function ρ
satisfies that there are some C > 0 and r ∈ [0, 1/2) such that:∫ +∞

0
e−sαρ(α)dα & e−Cs

r
. (5)

Then, system (2) is not null observable in average in G0.

Examples: ρ(α) = 1(0,1), ρ(α) = e−α1(0,+∞), ρ(α) = 2α1(0,1),

ρ(α) ∼0+ e−Cα
− r

1−r
for r ∈ (0, 1/2), ...
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Main results: rigorous statements and proofs.

Proof of not having null observability (i)

Remark
The problem is not a lack of unique continuation property, as shown before.
Instead, the problem is the existence of a sequence φN satisfying:

lim
N→∞

‖ũ(T , ·;φN)‖L2(G)(∫ T

0

∫
G0
|ũ(t, x ;φN)|2dxdt

)1/2
= +∞.

I To ensure that ũ is small in (0,T )× G0 we need:⋃
N≥N0

supp(φN) ⊂⊂ G \ G0 and φN ∈ 〈ei 〉⊥i∈ΛN
.

I To prevent the averaged solution from decaying too fast we need:

‖PCNφN‖L2(G) ≥
√

3‖φN‖L2(G)/2.
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Main results: rigorous statements and proofs.

Proof of not having null observability (ii)

Using the first hypothesis we obtain that:
∫ T

0

∫
G0

∣∣∣∣∫ +∞

0
u(t, x ;α, φN )ρ(α)dα

∣∣∣∣2 dxdt ≤
∫ T

0

∫
G0

∫ +∞

0
|u(t, x ;α, φN )|2 ρ(α)dαdxdt

=

∫ T

0

∫
G0

∫ +∞

0
|u(t, x ;α, φN )|2 1

αt≤N−1/2 (t, α)ρ(α)dαdxdt

+

∫ T

0

∫
G0

∫ +∞

0
|u(t, x ;α, φN )|2 1

αt>N−1/2 (t, α)ρ(α)dαdxdt ≤ C

(
e−c
√

N + e−
√

N
)
‖φN‖

2
L2(G)

.

Using the second hypothesis and (5) we obtain that:

‖ũ(T , ·)‖2
L2(G)

=
∑
i∈N

(∫ ∞
0

e−λiαT
ρ(α)dα

)2
|〈φN , ei 〉|

2 ≥ c
∑
i∈N

e−C(λi T )r |〈φN , ei 〉|
2

≥ ce−CNr ∑
i∈ΛCN

|〈φN , ei 〉|
2 = ce−CNr

‖PCNφN‖
2
L2(G)

≥ ce−CNr
‖φN‖

2
L2(G)

.

Combining both inequalities, as r ∈ [0, 1/2) we find that:

lim
N→∞

‖ũ(T , ·;φN )‖
L2(G)(∫ T

0

∫
G0
|ũ(t, x ;φN )|2dxdt

)1/2
= +∞.
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Main results: rigorous statements and proofs.

Construction of the functions φN

In fact, we consider as initial values:

φN (x) :=

[
C̃
√

N
]∑

i1,...,id =0

ci,N ςi,N (x), for ςi,N (x) := ς

3
√
N

x − p

(
i[

C̃
√

N
]
)

C̃`

 ,

for ς a cut-off function and p a parametrization of the cube.
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Main results: rigorous statements and proofs.

Properties of the functions φN

I The support is clearly in G \ G0 by construction.

I We can find some coefficients ci,N such that 〈ei 〉⊥i∈ΛN
. This is just solving a linear homogeneous system

with more equations than variables by Weyl’s Law.
I For the third property it suffices to prove that:

‖∆φN‖L2(G)
≤

CN

2
‖φN‖L2(G)

.

This is done by linear transformations and because supp(ςi,N ) ∩ supp(ς
ĩ,N

) = ∅. Indeed:

‖∆φN‖
2
L2(G)

=

[
C̃
√

N
]∑

i1,...,id =0

c2
i,N

(
3
√
N

C̃`

)4 ∫
G
|∆ς|2

3
√

N

x − p

(
i[

C̃
√

N
]
)

C̃`

 dx

=


[
C̃
√

N
]∑

i1,...,id =0

c2
i,N


(

3
√
N

C̃`

)3

‖∆ς‖2
L2(B(0,1))

≤ C


[
C̃
√

N
]∑

i1,...,id =0

c2
i,N


(

3
√

N

C̃`

)3

‖ς‖2
L2(B(0,1))

= CN2

[
C̃
√

N
]∑

i1,...,id =0

c2
i,N

∫
G
|ς|2

3
√
N

x − p

(
i[

C̃
√

N
]
)

C̃`

 dx = CN2‖φN‖
2
L2(G)

.
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Some numerical simulations
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Figure: An example on how the sequence looks like for G = (0, π),
G0 = (0, π/2) and ρ(α) = 1(0,1).
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Some numerical simulations

Numerical illustration of the minimum of the functional
associated to the control problem.

On the following slides we minimize the following functional with
the help of Matlab:

J(φ) =
1

2

∫ T

0

∫
G0

∣∣∣∣∫ +∞

0
ϕ(t, x ;α, φ)ρ(α)dα

∣∣∣∣2 dxdt
+

〈
y0,

∫ +∞

0
ϕ(0;α, φ)ρ(α)dα

〉
,

for ϕ the averaged solution of the adjoint heat equation. In
particular, we consider the initial value y0 = 1/2, G = (0, π) and
G0 = (1, 2) and compare what happens when considering the
uniform distributions in (0, 1) and (1, 2) (i.e. ρ = 1(0,1) and
ρ = 1(1,2)).
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Some numerical simulations

Figure: The optimal control for ρ = 1(1,2) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Figure: The optimal control for ρ = 1(0,1) and y0 = 1
2 induced by the

minimum of the functional J in V40, V50 and V60, for VM := 〈ei 〉Mi=1.
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Figure: The state in time t = 1 of the averaged solutions of the heat
equation after applying the control induced by the minimum of J in V40,
V50 and V60 with y0 = 1

2 . In the left figure we have considered ρ = 1(1,2)

and in the right one ρ = 1(0,1).
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Open problems

I Study the averaged controllability of more general heat
equations:

yt − div(σ(x , α)∇y) + A(x , α) · ∇y + a(x , α)y = 0.

The difficulty is that in the general case the eigenfunctions of
the elliptic operator depend on α.

I Study the averaged wave and Schrödinger equations with
arbitrary random diffusion.

I Determine how to minimize the variance when we control the
average of the heat equation.

I Determine if we have the averaged unique continuation
property for all random diffusions α. We have to deal with the
difficulty that the frequencies do not decay hierarchically.
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Thank you for your attention!
Is there any question?
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