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Previous Studies

- Heliostat location
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Introduction

Test Case

Planta Solar 10 (PS10), Sanlúcar la Mayor (Spain)
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Ashley, Thomas; Carrizosa, Emilio; Fernández-Cara, Enrique; Optimisation of aiming strategies in

Solar Power Tower plants. Energy, 137C, pp. 285-291 (2017). Q1 IF: 5.537



Aiming Strategy

Literature review

Besarati et al. Optimal heliostat aiming strategy for uniform distribution of heat �ux on the receiver

of a solar power tower plant. Energy Conversion and Management 84 (2014) 234−243.

Kun wang et al. Multi-objective optimization of the aiming strategy for the solar power tower with a

cavity receiver by using the non-dominated sorting genetic algorithm. Applied Energy 205 (2017)
399−416.
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Aiming Strategy - Radiation Distribution

Spillage e�ciency

Proportion of re�ected energy captured by receiver, from
heliostat located at x, y

fsp(x, y,Θ) = f1(x, y,Θ)

∫ 2π

0

∫ r

0
exp
(−f̃2(ρ, φ, x, y)

2f23 (x, y,Θ)

)
ρ dρ dφ

where r is the radius of the circular receiver and

f̃2(ρ, φ, x, y) ≡ f2(ρ cosφ, ρ sinφ, x, y).
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Aiming Strategy - Optimisation

Maximise energy

Binary integer linear programming used to maximise the
energy reaching the receiver, with multiple aiming points
considered
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Aiming Strategy - Optimisation

Maximise energy

Binary integer linear programming used to maximise the
energy reaching the receiver, with multiple aiming points
considered

Maximise
∑
h∈H
a∈A

Rhazha

Subject to: ∑
a

zha ≤ 1 ∀h ∈ H,

C∗ ≤
∑
h∈H
a∈A

r
i
hazha ≤ C

∗ ∀i ∈ A,

∑
h∈H
a∈A

r
i
hazha ≤ τ +

∑
h∈H
a∈A

r
j
ha
zha ∀i, j ∈ A with i 6= j

zha ∈ {0, 1} ∀h ∈ H, ∀a ∈ A
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Aiming Strategy - Illustrative Example

SPT plant details

� Name: PS10, Sanlúcar la
Mayor

� Heliostats: 624

� Number of aiming points:
25
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Aiming Strategy - Illustrative Example

SPT plant details

� Name: PS10, Sanlúcar la
Mayor

� Heliostats: 624

� Number of aiming points:
25

Computational aspects

� Python

� Gurobi

� 30s time limit
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Aiming Strategy - Illustrative Example

Morning: Sun in the East

� Cosine e�ciency high
in West

� Spillage e�ciency low
in East
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Aiming Strategy - Illustrative Example

Noon: Sun overhead

� Similar e�ciencies

� Energy contribution
important
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Aiming Strategy - Illustrative Example

Afternoon: Sun in the West

� Cosine e�ciency high in
West

� Spillage e�ciency low in
East
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Aiming Strategy - Inclement Weather

Cloud cover

E�ciency loss due to cloud cover investigated utilising
stochastic linear programming techniques

Ashley, Thomas; Carrizosa, Emilio; Fernández-Cara, Enrique. Optimisation of Aiming Strategies in

Solar Tower Power Plants. AIP Conference Proceedings 2033, 040005 (2018)
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Ashley, Thomas; Carrizosa, Emilio; Fernández-Cara, Enrique. Continuous optimisation techniques for

optimal aiming strategies in solar power tower plants. Solar Energy Volume 190, 15 September
2019, Pages 525-530. Q1 IF: 4.674



Aiming Strategy II - Model

Instead of �xing aiming point coordinates:

Continuous aiming point

Radiation reaching point (u, v) on receiver Ω from heliostat
h ∈ H aiming at ph ∈ Ω given by Fu,v(h, ph)

where,
Ω a non-empty bounded open convex set Ω ⊂ R2.

Total radiation re�ected by heliostat h aiming at ph given by

f(h, ph) =
∫
Fu,v(h, ph)dΩ.
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Aiming Strategy II - Model

Objective function

A weighted penalised objective function is considered

Max A
∑
h∈H

f(h, ph)− (1−A)

∫ [∑
h∈H

Fu,v(h, ph)− Etaru,v

]2
dΩ

ph ∈ Ω

For numerical purposes, the objective function must be
approximated as

g(P) : A
∑
h∈H

fsp(h, ph)−(1−A)
|Ω|
I

I∑
i=1

[∑
h∈H

Fui,vi(h, ph)− Etarui,vi

]2
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AS II - Algorithm

Gradient ascent

First-order iterative optimisation algorithm iterates Pk

towards a (local) optimum

P̃k+1 = Pk + γk,h∇g(Pk)

Projection

Objective function constrained by ph ∈ Ω requires
projection function P to return the solution to Ω

Pk+1 = P (P̃k+1)

where, for each P, P (P) denotes the component-wise
projection of P onto Ω.
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Aiming Strategy II - Algorithm

Step size

Adaptive step size using modi�ed Armijo's Rule, with scaling
parameter ε

γk,h = γk−1,h · ε

Step size convergence

Iterative line search used until maximum found

g(Pk) > g(Pk−1)
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Aiming Strategy II - Illustrative Example

SPT plant details

� Name: PS10, Sanlúcar la
Mayor

� Heliostats: 624

� I = 900

� A: 100 values ∈ [0, 1]

� Target Distribution:
homogeneous

Computation

� Python

� Bespoke solver

� < 10s per run
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Aiming Strategy II - Illustrative Example

Single timepoint with A = 0,9

Aiming
strategy

Radiation
distribution
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Aiming Strategy II - Illustrative Example

Single timepoint with A = 0,3

Aiming
strategy

Radiation
distribution
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Aiming Strategy II - Illustrative Example

Pareto Front

100 values of A

Minimising
target
distribution
deviation

Maximising total
energy

Computation

Multi modal

� 30 runs

< 10 iterations
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Ashley, Thomas; Carrizosa, Emilio; Fernández-Cara, Enrique. Dynamic Continuous Optimisation

Applied to Renewable Energy. (Under Review)



Aiming Strategy III - Model overview

J(p) = Maximise A

∫ T

0

(∫∫
R

∑
h∈H

f(h,p, t)dudv
)
dt−

(1−A)

∫ T

0

∫∫
R

(
∑
h∈H

F u,v(h,p, t)− Eu,v,ttar (t))2dudvdt

with A ∈ [0, 1].
Subject to: ∫ T

0
(||ṗh(t)|| − Vp)2+dt ≤ τ1 ∀h ∈ H

∫ T

0

∫∫
R

(∑
h∈H

∂

∂t
F u,v(h,p, t)

)2
dudvdt ≤ τ2

ph(t) ∈ Ω ∀h ∈ H, t ∈ [0, T ]
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Algorithm I - Penalisation

Maximise J(p) =

∫ T

0
G(t,p(t)) dt

Subject to

p ∈ Pad, M(p) ≤ σ

Maximise Jµ(p) := J(p)− 1

2µ
|(M(p)− σ)+|2

∇Jµ(pN ) = ∇J(pN )− 1

µ
(M(pN )− σ)+ · ∇M(pN )
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Algorithm II - Augmented Lagrangian

Lµ(p;λ) := J(p)−
2∑
i=1

ψ(Mi(p)− σi, λi;µ)

where,

ψ(z, β;µ) :=

z · β +
1

2µ
|z|2 if z + µβ ≥ 0

−µ
2
|β|2 otherwise,

µ > 0.

Minimise sup
p∈P0

Lµ(p;λ)

Subject to: λ ∈ E, λ ≥ 0.

New methods and results in the optimisation of solar power tower plants 27 / 40



Algorithm II - Augmented Lagrangian

Lµ(p;λ) := J(p)−
2∑
i=1

ψ(Mi(p)− σi, λi;µ)

where,

ψ(z, β;µ) :=

z · β +
1

2µ
|z|2 if z + µβ ≥ 0

−µ
2
|β|2 otherwise,

µ > 0.

Minimise sup
p∈P0

Lµ(p;λ)

Subject to: λ ∈ E, λ ≥ 0.

New methods and results in the optimisation of solar power tower plants 27 / 40



Aiming Strategy III - Algorithms

Gradient Ascent

Aiming points pn+1
N found by gradient ascent with projection

P0,N

pn+1
N = pnN + γkh∇GN (pnN ).

pn+1
N = P0,N (p̃n+1

N ), p̃n+1
N = pnN + Γk∇Jµ(pnN )

where Γk = diag(γk1 , . . . , γ
k
N ).

Adaptive step size with
modi�ed Armijo's Rule γkh = γk−1h · ε, ε ∈ (0, 1)
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Aiming Strategy III - Illustrative Example

PS10 SPT plant

Variable Value Description

H 624 Heliostats
T 10 Time points
Vp 0.5 Velocity limit
Etar 2.2e6 Flux gradient limit
ε 0.9 Armijo's constant
γ0 0.1 Initial step size
µ 1e5 Penalty constant
A 0.7 Weighting parameter
σ1 0 Velocity constraint
σ2 1e4 Flux gradient constraint
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AS III - Illustrative Example

PS10 SPT plant

Variable Value Description

H 624 Heliostats
T 10 Time points
Vp 0.5 Velocity limit
Etar 2.2e6 Flux gradient limit
ε 0.9 Armijo's constant
γ0 0.1 Initial step size
µ 1e5 Penalty constant
A 0.7 Weighting parameter
σ1 0 Velocity constraint
σ2 1e4 Flux gradient constraint

Computation

� Python

� Bespoke solver

� Solution in
< 2,5min
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Aiming Strategy III - Illustrative Example

Incident
radiation
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Aiming Strategy III - Illustrative Example
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Aiming Strategy III - Illustrative Example
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AS III - Illustrative Example
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Aiming Strategy III - Illustrative Example
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Aiming Strategy III - Illustrative Example
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Aiming Strategy III - Illustrative Example
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Ashley, Thomas; Carrizosa, Emilio; Fernández-Cara, Enrique. Heliostat �eld cleaning scheduling for

Solar Power Tower plants: A heuristic approach. Applied Energy 235 (2019) 653-660. Q1 IF: 8.426



Cleaning Strategy - Problem formulation

Objective

Maximise received energy across a de�ned length of time by
optimising the cleaning schedule

Consider a 3 Stage optimisation process

� Clustering optimisation

� Schedule optimisation

� Local search heuristics
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Cleaning Strategy - Schedule Example

Schedule parameters

� Schedule length:
16 periods

� Number of
groups: 52

� Groups per day:
4
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Cleaning Strategy - Schedule Example

Computational aspects

� Python

� Gurobi Solver

� 10min time limit
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Future research

Cleaning optimisation

� Multi-depots/vehicles

� Unmanned aerial vehicles (UAVs)

Large-dimensional optimisation problem
Vehicle routing problem with multiple trips VRPMT
Multiple moving depots (charging vehicles)

Energy Storage

� Market price

� Thermal losses

Integrated optimisation

� Thermal modelling

Numerical model of receiver components

� Coupled model

Integration into dynamic aiming strategy optimisation
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