
HJB-RBF based approach for the control of PDEs

Alessandro Alla
work in collaboration with H. Oliveira, G. Santin

Control in Times of Crisis
Online Seminar

13/05/2021

Outline

1 Dynamic Programming Principle and its discretization

2 Radial Basis Functions and Shepard’s Approximation

3 Value Iteration with Shepard Approximation

4 Numerical Tests

Dynamic Programming Principle and its discretization

Outline

1 Dynamic Programming Principle and its discretization

2 Radial Basis Functions and Shepard’s Approximation

3 Value Iteration with Shepard Approximation

4 Numerical Tests

Dynamic Programming Principle and its discretization

Optimal control and DPP

Dynamical Systems {
ẏ(t) = f (y(t), u(t)), t ∈ (0,∞),

y(0) = x ∈ Rd

Cost Functional

Jx(y , u) ≡
∫ ∞

0
g(y(s), u(s))e−λsds

Value Function

v(x) = inf
u∈U
Jx(y , u)

Dynamic Programming Principle and its discretization

Optimal control and DPP

Feedback Control

u∗(t) = arg min
u∈U

{g(x , u) +∇v(x) · f (x , u)}

Dynamical Programming Principle (DPP)

v(x) = inf
u∈U

{∫ τ

0
g(y(s), u(s))e−λsds + e−λτ v(yx(τ))

}
, ∀x ∈ Rd , τ > 0

Hamilton–Jacobi–Bellman

λv(x) + max
u∈U
{−g(x , u)−∇v(x) · f (x , u)} = 0

Dynamic Programming Principle and its discretization

Semi-Lagrangian discretization and Value Iteration

Dynamic Programming Principle

v(x) = min
u∈U

{∫ τ

t
e−λsg(y(s), u(s)) ds + v (y(τ)) e−λτ)

}
Semi-Lagrangian scheme

V k+1
i = min

u∈U

{
∆t g(xi , u) + e−λ∆t

(
V k(xi + ∆t f (xi , u))

)}
, k = 1, 2, . . . ,

xi

xi + ∆t f (xi , u1)

xi
xi + ∆t f (xi , u2)

Discretization: constant ∆t for time
and Nu controls

Cons of the approach

– V n(xi + ∆t f (xi , u, tn)) needs an
interpolation operator

– Requires a numerical domain Ω chosen a
priori and selection of BC

– Curse of dimensionality on structured
meshes

Dynamic Programming Principle and its discretization

Semi-Lagrangian discretization and Value Iteration

V (xj) = min
u∈U

{
∆t g(xj , u) + (1−∆tλ)I1[V](xj + ∆t f (xj , u))

}
the scheme is a fixed point method

V k+1 = W (V k), k = 0, 1, . . .

with

[W (V)]j := min
u∈U

{
∆t g(xj , u) + (1−∆tλ)I1[V](xj + ∆t f (xj , u))

}
W (V) is a contraction. Convergence is guaranteed for any initial condition.

Feedback reconstruction

Let u∗n(x) the control at each time interval [tn, tn+1) and x = y(tn)

u∗n(x) = arg min
u∈U

{∆t g(x , u) + (1− λ∆t)I1[V](x + ∆tf (x , u))}

Dynamic Programming Principle and its discretization

How can we compute the value function?

The bottleneck of the DP approach is the computation of the value function, since this
requires to solve a non linear PDE in high-dimension.
This is a challenging problem due to the huge number of nodes involved and to the
singularities of the solution

– Accelerated iterative schemes

– Domain Decomposition

– Max plus algebra

– Neural Networks

– Model Order Reduction

– Sparse Grids

– Spectral Methods

– Tensor Decomposition

– Tree Structure Algorithm (see L. Saluzzi’s talk 17/06/21)

Dynamic Programming Principle and its discretization

Main Objectives

Literature for this talk

– O. Junge, A. Schreiber. Dynamic programming using radial basis functions, 2015

– G. Ferretti, R. Ferretti, O. Junge, A. Scheriber. An adaptive multilevel radial vasis
funcition scheme for HJB equation, 2017

– C.M. Chilan, B.A. Conway, Optimal nonlinear control using Hamilton-Jacobi-Bellman
viscosity solutions on unstructured grids, 2020

– A., H. Oliveira, G. Santin, in preparation

What we propose

– An algorithm for Dynamic Programming in high dimensions using RBF approximation
on unstructured meshes,

– A method to automatize the selection of the shape parameter used in RBF approximation

– Error estimates

– Feedback for a class of initial conditions

Radial Basis Functions and Shepard’s Approximation

Outline

1 Dynamic Programming Principle and its discretization

2 Radial Basis Functions and Shepard’s Approximation

3 Value Iteration with Shepard Approximation

4 Numerical Tests

Radial Basis Functions and Shepard’s Approximation

RBF and Shepard’s approximation

RBF Interpolation

Given a set of nodes X = {x1, x2, · · · xn} ⊂ Ω and a bounded function f : Ω ⊂ Rd → R

I σ[f](x) =
n∑

i=1

ciϕ(σ‖x − xi‖), I σ[f](xj) = f (xj)

where ϕσ : [0,∞)→ R, σ > 0 is a shape parameter that affects the RBF

Wendland’s RBF ϕσ(r) = max{0, (1− σr)6(35σ2r2 + 18σr + 3)

Left: σ = 0.8 (flat)
Right: σ = 2 (spiky)

Radial Basis Functions and Shepard’s Approximation

RBF and Shepard approximation

Shepard’s approximation

Sσ[f](x) =
n∑

i=1

f (xi)ψ
σ
i (x), ψi (x) =

ϕσ(‖x − xi‖)∑n
j=1 ϕ

σ(‖x − xj‖)

Approximation versus Interpolation

– Interpolation: Solves linear system

– Shepard approximation: Computes matrix vector multiplication

Properties:

– ψi (x) > 0 is compactly supported in B(xi , 1/σ) ⊂ Ω

–
∑n

i=1 ψ
σ
i (x) = 1 for all x ∈ ΩX ,σ with ΩX ,σ :=

⋃
x∈X B(x , 1/σ) ⊂ Rd

– the compact support of the weights leads to a computational advantage and a
localization of the method. The distance matrix D ∈ Rn×n with Dij := ‖xi − xj‖2 is
sparse such that ‖xi − xj‖ ≤ 1/σ needs to be computed

Radial Basis Functions and Shepard’s Approximation

RBF and Shepard approximation

Fill Distance

h = hΩ,X := max
x∈Ω

min
y∈X
‖x − y‖

Separation Distance

q = qX = min
xi 6=xj∈X

‖xi − xj‖

Lemma (Junge & Schreiber, 2015)

Let v : Ω ⊂ Rd → R be Lipschitz continuous with Lipschitz constant Lv . Let Xk be a
sequence of sets of nodes with fill distances hk and shape parameters σk = θ

hk
and θ > 0. Let

ρ > 0 be such that B(0, ρ) ⊃ supp(ϕ).Then

||v − Skv ||∞ ≤ Lv
ρ

θ
hk

Value Iteration with Shepard Approximation

Outline

1 Dynamic Programming Principle and its discretization

2 Radial Basis Functions and Shepard’s Approximation

3 Value Iteration with Shepard Approximation

4 Numerical Tests

Value Iteration with Shepard Approximation

Value Iteration with Shepard Approximation

The Shepard Approximation can be described as an operator

Sσ : (L∞, ||.||∞)→ (W, ||.||∞)

where W = span{ψ1, ψ2, · · ·ψn} and Sσf (x) =
∑n

i=1 f (xi)ψ
σ
i (x)

[Wσ(V)]j = min
u∈U

{
∆t g(xj , u) + (1−∆tλ)Sσ[V](xj + ∆t f (xj , u))

}
– Convergence: W is a contraction (the operator Sσ has norm 1)

– Error Estimate: ‖v − V ‖∞ ≤
Lv
θ

h

∆t
(σ = θ/h)

– (Discrete) Feedback reconstruction

u∗n(x) = arg min
u∈U

{g(x , u) + (1− λ∆t)Sσ[V](x + ∆tf (x , u))}

with x = y(tn)

Value Iteration with Shepard Approximation

Value Iteration with Shepard Approximation

Comments

– The requirement that h decays to zero is too restrictive for high dimensional problems,
since filling the entire Ω may be out of reach

– Shepard’s method perform approximations in high dimensions and unstructured grids

Novelties:

– Generation unstructured meshes

– Selection of the shape parameter

– (first) Error estimates

– Control of PDEs

Value Iteration with Shepard Approximation

Scattered Mesh

”Standard” ways to generate a mesh

– equi-distributed grid: nicely covers the entire space and usually provides accurate results
for interpolation problems BUT not feasible for high dimensional problems e.g. d > 103

– random set of points: computationally efficient to generate and to use, BUT the
distribution of points can be irregular and the fill distance may decrease only very slowly
when increasing the number of points

Remarks

– There is a tradeoff between keeping the grid at a reasonable size and the need to cover
the relevant part of the computational domain

– The fill distance for any sequence of points {Xn}n∈N can at most decrease as
h ≤ cΩn

−1/d in Rd

Value Iteration with Shepard Approximation

Scattered Mesh

[Wσ(V)]j = min
u∈U

{
∆t g(xj , u) + (1−∆tλ)Sσ[V](xj + ∆t f (xj , u))

}

Key fact

The evolution of the system provides itself an indication of the regions of interest within the
domain. We propose a discretization method driven by the dynamics of the control problem

Dynamics driven grid

Fix a time step ∆t > 0, a maximum number K ∈ N of discrete times and, for L,M > 0, some
initial conditions of interest and a discretization of the control space

X := {x̄1, x̄2, . . . , x̄L} ⊂ Ω, U := {ū1, ū2, . . . , ūM} ⊂ U

Value Iteration with Shepard Approximation

Scattered Mesh

For a given pair of initial condition x̄i ∈ X and control ūj ∈ U we obtain trajectories

xk+1
i ,j = xki ,j + ∆t f (xki ,j , ūj), k = 1, . . . , K̄ − 1,

x1
i ,j = x̄i

Given (x̄i , ūj) we obtain the set X (x̄i , ūj) := {x1
i ,j , . . . , x

K̄
i ,j} containing the discrete trajectory,

and our mesh is defined as

X := X (X ,U,∆t,K) :=
L̄⋃

i=1

M̄⋃
j=1

X (x̄i , ūj)

Comments

– We do not aim at filling the space Ω, but provides points along trajectories of interest

– The values of X ,U,∆t,K should be chosen so that X contains points that are suitably
close to the points of interest for the solution of the control problem

Value Iteration with Shepard Approximation

Scattered Mesh

Property of this mesh I

Let X := X (X ,U,∆t,K) be the dynamics-dependent mesh, and assume that f is uniformly
bounded i.e., there exists Mf > 0 such that

sup
x∈Ω,u∈U

‖f (x , u)‖ ≤ Mf

Then for each x ∈ X , ∆t > 0 and u ∈ U it holds

dist(x + ∆t f (x , u),X) ≤ Mf ∆t

Value Iteration with Shepard Approximation

Scattered Mesh

Property of this mesh II

Furthermore if f is uniformly Lipschitz continuous in both variables, there exist Lx , Lu > 0 s. t.

‖f (x , u)− f (x ′, u)‖ ≤ Lx‖x − x ′‖ ∀x , x ′ ∈ Ω, u ∈ U

‖f (x , u)− f (x , u′)‖ ≤ Lu‖u − u′‖ ∀x ∈ Ω, u, u′ ∈ U

Then, if x := xk(x0, u,∆t) ∈ Ω is a point on a discrete trajectory with initial point x0 ∈ Ω,
control u ∈ U, timestep ∆t > 0, and time instant k ∈ N, k ≤ K̄ , it holds

dist(x ,X) ≤
(
|∆t −∆t|K̄Mf + min

x̄∈X̄
‖x̄ − x0‖+ K̄∆tLu min

ū∈Ū
‖ū − u‖

)
eK̄∆tLx

Value Iteration with Shepard Approximation

Selection of the shape parameter in RBF

– As pointed by Fasshauer (2007) and also by Junge and Schreiber (2015), the ideal choice
of shape parameter σ is crucial for accurate approximations

– There is no efficient method defined in the literature for choosing the shape parameter. In
general, a trial and error procedure is necessary

– Cross validation and maximum likelihood estimation, but they are designed to optimize
the value of σ in a fixed approximation setting

Warning

We need to construct an approximant at each iteration k within the value iteration

Value Iteration with Shepard Approximation

Selection of the shape parameter in RBF

– σ := θ/hΩ,X for a given θ > 0

– Since hΩ,X is difficult to compute or even to estimate in high dimensional problems,
we use σ = θ/qX and we optimize the value of θ > 0

Optimization over θ

Choosing an admissible set of parameters P := [θmin, θmax] ⊂ R+

θ̄ := argminθ∈P R(θ/qX) = argminθ∈P ‖Vθ/qX −Wθ/qX (Vθ/qX)‖∞

Remark: Optimization problem might be solved by

– comparison over{θ1, . . . , θNp} ⊂ P computing all the value functions for {θi}
Np

i=1

– gradient method with continuous space P and

Rθ =
R(θ + ε)− R(θ)

ε
, ε > 0

The method relies on a-posteriori criteria (the residual)

Value Iteration with Shepard Approximation

Selection of the shape parameter

Compatibility between the mesh and the shape parameter

– The grid X is fixed independently of σ. We need an intervalP := [θmin, θmax]

– Sσ[v](x + ∆t f (x , u)) with x ∈ X and u ∈ UM

x + ∆tf (x , u) ∈ ΩX ,σ = ∪x∈XB(x , 1/σ)

for all x ∈ X and u ∈ UM

dist(x + ∆tf (x , u),X) ≤ Mf ∆t ≤ 1/σ = qX/θ =⇒ θmax ≤
qX

Mf ∆t

– The value θmin > 0 can instead be chosen freely, since a smaller parameter corresponds to
a wider RBF, and thus to a larger support

Value Iteration with Shepard Approximation

Error estimates

Mesh estimate σ := θ/hX ,Ω̃

h
X ,Ω̃

:= dist(Ω̃,X) = max
x∈Ω̃

dist(x ,X)

≤ C (K̄ ,∆t, Lx ,Mf , Lu)

(
max

∆̃t∈T̃
|∆̃t −∆t|+ max

x̃∈X̃
min
x̄∈X̄
‖x̄ − x0‖+ max

ũ∈Ũ
min
ū∈Ū
‖ū − u‖

)
Value Function estimate

‖v − V ‖∞,Ω̃ := max
x∈Ω̃
|v(x)− V (x)| ≤ Lv

θ∆̃t
h
X ,Ω̃

≤ LvC

θ∆̃t

(
max

∆̃t∈T̃
|∆̃t −∆t|+ max

x̃∈X̃
min
x̄∈X̄
‖x̄ − x0‖+ max

ũ∈Ũ
min
ū∈Ū
‖ū − u‖

)
hX ,Ω̃ and qX can be computed

Value Iteration with Shepard Approximation

Algorithm 1: Value Iteration with shape parameter selection

1: INPUT: Ω,∆t,U,P parameter range, tolerance, RBF and system dynamics f , flag
2: initialization;
3: Generate Mesh
4: if flag == Comparison then
5: for θ ∈ P do
6: Compute Vθ;
7: R(θ) = ||Vθ −W (Vθ)||∞
8: end for
9: θ̄ = arg min

θ∈P
R(θ);

10: else
11: Rθ = 1, θ = θ0, tol, ε
12: while ‖Rθ‖ > tol do
13: Compute Vθ and Vθ+ε

14: Evaluate R(Vθ) and R(Vθ+ε)

15: Rθ =
R(Vθ+ε)− R(Vθ)

ε
16: θ = θ − Rθ
17: end while
18: θ̄ = θ,Vθ̄ = Vθ
19: end if
20: OUTPUT: {θ̄,Vθ̄}

Numerical Tests

Outline

1 Dynamic Programming Principle and its discretization

2 Radial Basis Functions and Shepard’s Approximation

3 Value Iteration with Shepard Approximation

4 Numerical Tests

Numerical Tests

Eikonal equation in 2D

Problem data

We consider a two dimensional problem in [−1, 1]2 with dynamics

f (x , u) =

(
cos(u)
sin(u)

)
control space U = [0, 2π], target T = (0, 0) and a cost functional Jx(y , u) =

∫ t(x ,u)
0 e−λsds

where

t(x , u) :=

{
infs{s ∈ R+ : yx(s, u) ∈ T }, if yx(s, u) ∈ T for some s

+∞, otherwise.
.

Numerical Tests

Eikonal equation in 2D

Details

– The distance function is the exact solution

– The RBF used in all cases is the C 2 Compactly Supported Wendland’s function
ϕσ(r) = max{0, (1− σr)6(35σr2 + 18σr + 3)}

– We compute the error with ‖ · ‖∞

Errors

– Relative error:
||Vθ̄−V ∗||∞
||V ∗||∞ where V ∗ is the exact solution and θ̄ = arg min

θ∈P
R(θ)

– Minimum error: For each fill distance the minimum error is ||Vθ∗−V
∗||∞

||V ∗||∞ where

θ∗ = arg min
θ∈P

||Vθ−V ∗||∞
||V ∗||∞

Numerical Tests

Eikonal equation in 2D - Residuals - Equidistant Grid

0 2 4 6 8 10

Parameter

0.011

0.012

0.013

0.014

0.015

0.016

0 0.5 1 1.5 2

Parameter

0.011

0.012

0.013

0.014

0.015

0.016

Figure: Left: R(Vθ) in P1 = [0.1, 10] with step size of 0.1. Right: R(Vθ) in P2 = [0.1, 2] with step size
of 0.05.

Numerical Tests

Eikonal equation in 2D - Residuals - Equidistant Grid

0.4 0.5 0.6 0.7

Parameter

0.0105

0.0106

0.0107

0.0108

0.0109

0.4 0.5 0.6 0.7

Parameter

0

0.05

0.1

0.15

0.2

0.25

0.3 11
2

21
2

41
2

81
2

0 0.05 0.1 0.15 0.2

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure: Left: Residual in case of 812 points. Middle: Vθ error. Right: relative and minimum error

h Points CPU time θ̄ θ∗ E(Vθ̄) E(Vθ∗)
h
θ̄

h
θ∗

0.2 112 5.1 0.55 0.65 0.1775 0.1405 0.3636 0.3077
0.1 212 14.5 0.55 0.55 0.0942 0.0942 0.1818 0.1818

0.05 412 242 0.525 0.5 0.0634 0.0596 0.0952 0.1002
0.025 812 6.44e+3 0.525 0.45 0.0572 0.0389 0.0476 0.0556

Numerical Tests

Eikonal equation in 2D - Value Functions - Equidistant Grid

Regular Case: Domain discretized in 412 equally spaced points. Parameters: ∆t = 0.5∆x ,
λ = 1, σ = 0.475/h and U = [0, 2π] discretized in 16 points.

Figure: Left: Value Functions obtained by VI and Linear Interpolation. Right: Solution obtained by VI
and Shepard approximation

Numerical Tests

Eikonal equation in 2D - Residuals - Equidistant Grid

Points CPU time θ̄ E(Vθ̄)

121 0.31 0.55 0.1774
441 15 0.54 0.0984

1681 561 0.53 0.0649
6561 2.17e+4 0.518 0.0536

Table: Results using gradient method.

Numerical Tests

Eikonal equation in 2D - Meshes - Scattered Case

Meshes generated by a set of random points clustered using k-means algorithm

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure: Left: 200 points and fill distance 0.1618. Center: 800 points and fill distance 0.0846. Right:
3200 points and fill distance 0.0461.

Numerical Tests

Eikonal equation in 2D - Residuals - Scattered case

1 1.5 2 2.5 3

Parameter

0.033

0.0335

0.034

0.0345

0.035

0.0355

1 1.5 2 2.5 3

Parameter

0.1

0.15

0.2

0.25

0.3

0.35

0.4
200

400

800

1600

3200

0.05 0.1 0.15

0.1

0.15

0.2

0.25

0.3

Figure: Left: Average residual. Middle: Average Vθ error. Right: Average Relative and minimum error

h Points CPU time θ̄ θ∗ E(Vθ̄) E(Vθ∗)
h
θ̄

h
θ∗

0.1603 200 9.8 1.91 2.16 0.3031 0.2981 0.0839 0.0742
0.1177 400 14.6 1.86 2.06 0.23 0.2284 0.0633 0.0572
0.0861 800 31.8 1.92 2.21 0.172 0.1697 0.0448 0.0389
0.0641 1600 115 2.04 2.42 0.1432 0.1407 0.0314 0.0265
0.0464 3200 504 1.76 2.06 0.1037 0.0969 0.0264 0.0225

Table: Numerical Results with random unstructured Grid.

Numerical Tests

Eikonal equation in 2D - Value Functions - Scattered Case

Scattered Case: Domain populated by 3200 randomly selected points. Parameters: ∆t = h,
λ = 1, σ = 1.88/h and U = [0, 2π] discretized in 16 points.

Figure: Value Functions generated in a Random Unstructured Grid formed by 3200 points. Left: Exact
solution. Center: Solution obtained by VI and Shepard approximation. Right: Absolute error of exact
solution and value function obtained by Shepard approximation Value Iteration.

Numerical Tests

Eikonal equation in 2D - Meshes - Dynamic Grid

– Meshes generated using the dynamics of the problem. 16 controls, ∆t = 0.05 and the ∆t
used to select points were respectvely 0.1, 0.05 and 0.025.

– Left: 4 initial conditions. Center: 8 initial conditions. Right: 16 initial conditions. All
selected using k-means algorithm.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure: Left: 246 points and fill distance 0.1436. Upper Right: 909 points and fill distance 0.0882.
Center: 3457 points and fill distance 0.0439.

Numerical Tests

Eikonal equation in 2D - Residuals - Dynamic Grid

1 1.5 2 2.5 3

Parameter

0.032

0.034

0.036

0.038

0.04

0.042

1 1.5 2 2.5 3

Parameter

0

0.2

0.4

0.6

0.8
245

915

3469

0.05 0.1 0.15

0.1

0.15

0.2

0.25

0.3

Figure: Left: Average residual to case with 3483 points. Middle: Average Vθ error, Right: Average
Relative Error and Average Minimum Error against fill distance

h Points CPU time θ θ∗ E(Vθ̄) E(Vθ∗)
h
θ

h
θ∗

0.1642 245 8.5 1.58 1.82 0.3182 0.2949 0.1040 0.0902
0.0820 915 55.6 1.66 1.76 0.1861 0.1855 0.0494 0.0466
0.0455 3469 654 1.7 1.82 0.1016 0.0997 0.0268 0.0250

Numerical Tests

Eikonal equation in 2D - Feedback Reconstruction

x = (−0.7, 0.3)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Linear

Example 1

Example 2

Example 3

0 0.2 0.4 0.6 0.8

time

0

1

2

3

4

5

6

Linear

Example 1

Example 2

Example 3

x Linear Example 1 Example 2 Example 3

(0.5, 0.75) 0.6287 0.6287 0.7724 0.6664
(−0.7, 0.3) 0.5646 0.5646 0.6481 0.6481

Table: Evaluation of the cost functional for different methods and initial conditions x .

Numerical Tests

Test 2: Advection Equation

Dynamics
ỹt(ξ, t) + v · ∇ξ ỹ(ξ, t) = u(t)ỹ(ξ, t) (ξ, t) ∈ Ω× [0,T]

ỹ(ξ, t) = 0 ξ ∈ ∂Ω× [0,T]

ỹ(ξ, 0) = ỹ0(ξ) ξ ∈ Ω

Ω = [0, 5]2, v = 1, T = 2.5, U = [−2, 0], d = 10121

Cost functional (after semi-discretization)

Jx(y , u) ≡
∫ ∞

0
(‖y(s)‖2

2 + 10−5|u(s)|2)e−λsds

Parameters

Grid: 11 controls ∆̄t = 0.1 k = {0.5, 1} C :=
{
k sin(πξ1) sin(πξ2)χ[0,1]2

}
VI 21 controls, ∆t = 0.05,P = [0.4, 0.7] with step 0.05, CPU time = 583s

Numerical Tests

Test 2: Advection Equation (Parameters Traj: 81 controls, ∆t = 0.05)
NO NEED TO UPDATE THE VF

0 0.5 1 1.5 2 2.5 3

time

-2

-1.5

-1

-0.5

0

Figure: Initial condition y(x , 0) = 0.75sin(πx1)sin(πx2)χ[0,1]2 . Left-Right: uncontrolled solution,
controlled solution, optimal control

0 0.5 1 1.5 2 2.5

time

0

0.01

0.02

0.03

0.04

0.05
uncontrolled

controlled

0 0.5 1 1.5 2 2.5

time

0

0.002

0.004

0.006

0.008

0.01

0.012

uncontrolled

controlled

0 0.5 1 1.5 2 2.5

time

0

0.005

0.01

0.015

0.02

0.025

0.03
uncontrolled

controlled

Figure: Cost functional. Left: y(x , 0) = sin(πx1)sin(πx2)χ[0,1]2 . Center:
0.5y(x , 0) = sin(πx1)sin(πx2)χ[0,1]2 . Right: 0.75y(x , 0) = sin(πx1)sin(πx2)χ[0,1]2

Numerical Tests

Test 3: Nonlinear Heat Equation

Dynamics
ỹt(x , t) = α∆ỹ(x , t) + β(ỹ2(x , t)− ỹ3(x , t)) + u(t)ỹ0(x) (x , t) ∈ Ω× [0,∞)

∂nỹ(x , t) = 0 x ∈ ∂Ω× [0,∞)

ỹ0(x) = ỹ(x , 0) x ∈ Ω

with Ω = [0, 1]× [0, 1], α = 1
100 , β = 6, d = 961

Cost functional (after semi-discretization)

Jx(y , u) ≡
∫ ∞

0
(‖y(s)‖2

2 + 10−3|u(s)|2)e−λsds

Parameters

Grid: 11 controls ∆t = 0.1 k = {0.5, 1} C :=
{
k sin(πξ1) sin(πξ2)χ[0,1]2

}
VI: 21 controls, ∆t = 0.05,P = [1.8, 2.2] with step 0.05 CPU: 1.64e+04

Numerical Tests

Test 3: Nonlinear Heat Equation

1.8 1.9 2 2.1 2.2

Parameter

0.7954

0.7956

0.7958

0.796

0.7962

0.7964

0 1 2 3 4 5

time

-2

-1.5

-1

-0.5

0

Figure: Top. Initial condition y(x , 0) = 0.75sin(πx1)sin(πx2). Left: uncontrolled solution at time t = 5.
Right: controlled solution at time t = 5. Bottom. Left: residual, Right: optimal control

Numerical Tests

Test 3: Nonlinear Heat Equation

0 1 2 3 4 5

time

0

0.2

0.4

0.6

0.8

1

1.2

uncontrolled

controlled

0 1 2 3 4 5

time

0

0.2

0.4

0.6

0.8

1

1.2

uncontrolled

controlled

0 1 2 3 4 5

time

0

0.2

0.4

0.6

0.8

1

1.2

uncontrolled

controlled

0 1 2 3 4 5

time

0

1

2

3

4

5
uncontrolled

controlled

0 1 2 3 4 5

time

0

1

2

3

4
uncontrolled

controlled

0 1 2 3 4 5

time

0

1

2

3

4

5
uncontrolled

controlled

Figure: Running Cost and cost functional with initial condition y(x , 0) = ksin(πx1)sin(πx2),
k = 1, 0.5, 0.75 (left to right)

Numerical Tests

0 1 2 3 4 5

time

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5

time

0

0.2

0.4

0.6

0.8

1

1.2

uncontrolled

controlled

Figure: Initial condition y(x , 0) = 0.75sin(πx1)sin(πx2) +N (0, 0.025). Left: uncontrolled solution.
Middle: controlled solution. Right: optimal control. Running Cost with initial condition
y(x , 0) = 0.75sin(πx1)sin(πx2) +N (0, 0.025)

Numerical Tests

Conclusions and Future Works

Conclusions

– RBF and Shepard’s approximation are useful and computationally efficient to work in high
dimensional control problems

– A new algorithm to simultaneously solve the Value Iteration algorithm and select the
shape parameter

– A method that uses unstructured meshes driven by the dynamics

Outlook

– Adapt this framework to Policy Iteration algorithm

– Extend this method to semi-Lagrangian schemes

– Use of model reduction to speed up the computation and to ease the interpolation

Numerical Tests

References

– A. Alla, M. Falcone, and D. Kalise. An efficient policy iteration algorithm for dynamic programming
equations, SIAM J. Sci. Comput., 2015.

– A. Alla. M. Falcone. L. Saluzzi. An efficient DP algorithm on a tree-structure for finite horizon optimal
control problems SIAM J. Sci. Comput., 2019.

– A. Alla, H. Oliveira, G. Santin. HJB-RBF based approach for the control of PDEs, in preparation.

– M. Bardi and I. Capuzzo-Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman
Equations, 1997.

– C.M. Chilan, B.A. Conway, Optimal nonlinear control using Hamilton-Jacobi-Bellman viscosity solutions
on unstructured grids, Journal of Guidance, Control, and Dynamics, 2020.

– M. Falcone and R. Ferretti. Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi
equations, SIAM, 2013.

– G. F. Fasshauer. Meshfree Approximation Methods with MATLAB, 2007.

– L. Grüne An adaptive grid scheme for the discrete Hamilton-Jacobi-Bellman equation, Numerische
Mathematik, 1997.

– O. Junge, A. Schreiber. Dynamic programming using radial basis functions Discrete and Continuous
Dynamical Systems- Series A, 2015.

Thank you for you attention

	Dynamic Programming Principle and its discretization
	Radial Basis Functions and Shepard's Approximation
	Value Iteration with Shepard Approximation
	Numerical Tests

