Control in Times of Crisis.
Online seminar.

NEWS Next talk: February 25, Irena Lasiecka.

This scientific activity is a continuation of the online seminar Control en Tiempos de Crisis, this time addressing the international community interested in mathematical problems from control of differential equations, inverse problems and related subjects.

The seminar will take place each thursday at 10 AM in Mexico / 1: 00 PM in Chile / 5:00 PM in Berlin, Roma, Madrid, Paris in the platform Zoom. We plan to alternate talks of senior and junior researchers.

The link of each talk will be sent to the mailing list of the seminar. In order to be included in the list, please send a message to one of the organizers.

All talks are available on our youtube channel. Last talk: Christophe Zhang / Cyril Letrouit.

The information of this seminar is published in Researchseminars.

Next talks:
Date Speaker Title / Abstract
September 8 Jean-Michel Coron
(U Pierre et Marie Curie, France)
Rapid and finite-time stabilization.

We present various results on the rapid and the finite-time stabilization of control systems.
This includes control systems in finite dimension (with an application to a quadcopter
sliding on a plane) as well as control systems modeled by means of partial differential equations
(1-D linear hyperbolic systems, 1-D linear parabolic equations and KdV equations).
September 15
Talk 1
Claudia Moreno
(Université Paris-Saclay (UVSQ))
Control of a partial differential equation system of dispersive type.

In this talk, we study the exact controllability of a system composed by N Korteweg-de Vries equations.
This model is known in the litera- ture as the KdV equation on a finite star-shaped network which is used
to model for instance the cardiovascular system. The system originally was controlled in the literature
considering N Korteweg-de Vries equations and N + 1 controls : N controls at the ends of the network
and one control in the center of the network. We prove that the system remains controllable
without the control acting in the center of the network. Thus, we prove the exact controllability
of the system with N controls. We use the duality and multiplier method to study the controllability
of the linearized system around the origin and the result for the nonlinear system is obtained
by applying a fixed-point argument.
September 15
Talk 2
Irene Marin-Gayte
(U Sevilla, Spain)
Theoretical and numerical bi-objective optimal control: Nash equilibria.

This talk deals with the solution of some multi-objective optimal control problems for several PDEs:
linear and semilinear elliptic equations and stationary Navier-Stokes systems. More precisely, we
look for Nash equilibria associated to standard cost functionals. We deduce appropiate optimality sys-
-tems and we present some iterative algorithms. For the existence and characterization of Nash equilibria
in the Navier-Stokes case, we use the formalism of Dubovitskii and Milyutin. In this framework, we also
present a finite element approximation of the bi-objective problem and we illustrate the techniques with
several numerical experiments.
September 22 Marius Tucsnak
(U Bordeaux, France)
Does the boundary controlled heat equation define an exactly controllable system?

It is commonly accepted in the control theory of PDEs that parabolic equations, due to the smoothing effect,
do not determine exactly controllable systems when controlled from the boundary. The aim of this presentation
is to explain how the heat semigroup can be restricted to an appropriate function space on which, when
controlled from the boundary, it could determine an exactly controllable systems. To this aim, we first recall
some abstract concepts concerning reachability in an infinite dimensional context, insisting on the general
relevance of the concept of reachable space. We next describe some recent advances on the reachable space of
the boundary controlled heat equation in one space dimension. We next discuss the exact controllability of this
system in appropriate spaces of analytic functions. We give applications in determining the reachable space
with smooth inputs, with possible application to nonlinear problems. Finally, we discuss the possible
implications of our methods to improve the existing estimates of the control constant in small time.
September 29
Talk 1
José Antonio Villa
(UNAM, Mexico)
Hierarchical control for the semilinear heat equation.

Abstract: We present some results about hierarchical control of the semilinear heat equation
where the follower control must steer the solution to zero in some positive time and the leader
control must minimise a given functional. Also, results about the same objectives control
problem are done for the case when the controls are both inner controls and boundary conditions.
September 29
Talk 2
Gilcenio Rodrigues
(U F di Piaui, Brazil)
Boundary controllability of a one-dimensional phase-field system with one control force

October 6 Piermarco Cannarsa
(U Roma 2, Italy)
Bilinear control for evolution equations

Abstract: Bilinear control systems are receiving increasing attention as they can be used to
study problems for which an additive control action is out of question. For such systems, in
infinite dimension, weaker controllability properties can be expected than for additive controls.
For instance, exact controllability is out of question due to a well-known negative result by
Ball, Marsden, and Slemrod back in the 80ies. Nevertheless, one can seek to steer states to special
targets either in finite or infinite time.In this talk, the above problem will be addressed for
evolution equations of the form u'(t)=Au(t)+p(t)Bu(t) where A and B are linear operators in a
Hilbert space and p(t) is a single-input control. Applications to parabolic equations in one
space dimension will also be discussed.
October 13
Talk 1
Amaury Hayat
(Ecole des Ponts Paristech)
Stabilization of some nonlinear hyperbolic PDEs

Abstract: We consider two types of systems : density-velocity systems and traffic flows.
Density-velocity systems encompass many physical equations: isentropic Euler equations,
Saint-Venant equations, osmosis model, etc. We show that these equations have a local
dissipative property that allows to stabilize any steady-state with boundary feedback
controls, provided some physical assumption. Moreover, this holds even if we have no
knowledge of some the system parameters or with a single control.
Traffic flows are very interesting from a control perspective. In many situations the
steady-states are unstable, leading to travelling waves, known as stop-and-go waves by
engineers or simply jam. From a mathematical point of view they can be represented by
coupled hyperbolic PDEs with solutions of class BV. We will present on-going work showing
how one can try to stabilize the steady-states using autonomous vehicles, i.e. pointwise
controls. This leads to a system of ODEs and PDEs coupled by a flux relation, which provoke
non-classical shocks. The solutions are then at most BV and the control is contained in the
dynamics of the ODEs.
October 13
Talk 2
Chenmin Sun
(U. Cergy)
Classical and semi-classical observability for the Bouendi-Grushin operator

Abstract: The observability for the classical Schrödinger equation usually holds for very short
time, under suitable geometric conditions. However, it is not the case when the underlying geometry
is sub-elliptic. In this talk we consider the Schrodinger equation associated with the Bouendi-
Grushin operator. The Bouendi-Grushin operator is a subelliptic operator which is degenerate
along a line. In the Bouendi case, the associated Schrödinger equation exhibits a transport effect
which leads to a "sub-elliptic" geometric control condition and a minimal time to ensure the
observability. For general Bouendi-Grushin with stronger sub-elliptic effect, the observability for
the Schrödinger equation is never true. These observability results can be seen from a semi-
classical point of view, through a optimal resolvent esti- mate. Consequently, our resolvent
estimate leads to an energy decay rate for the associated damped wave equation. This talk is
based on a joint work with Nicolas Burq and another with Cyril Letrouit.
October 20 Karl Kunisch
(U Graz, Austria)
Solution Concepts for Optimal Feedback Control of Nonlinear Partial Differential Equations

Abstract: Feedback control of nonlinear systems in practice is still frequently based on linearisation
and subsequent treatment by efficient Riccati solvers. Here we want to follow different directions.

I concentrate on three solution strategies which aim at the nonlinear control system directly. The
first one is based on higher order Taylor expansions of the value function and leads to controls
which rely on generalized Ljapunov equations.

The second approach is based on Newton steps applied to the HJB equation. Combined with spectral
techniques and tensor calculus this allows to solve HJB equations up to dimension 100. The results
are demonstrated for the control of discretized Fokker Planck equations.

The third technique circumvents the direct solution of the HJB equation. Rather a neural network
is trained by means of a succinctly chosen ansatz and it is proven that it approximates the solution
to the HJB equation as the dimension of the network is increased.

This work relies on collaborations with T.Breiten, S.Dolgov, D.Kalise, L.Pfeiffer, and D.Walter.
October 27
Talk 1
Yuri Thamsten
(U. Fluminense, Brazil)
Local null controllability of a class of non-Newtonian incompressible viscous fluids

October 27
Talk 2
Jeffrey Park
(U Alaska Fairbanks,US)
Inverse Problem for the Schrödinger Equation with Non-self-adjoint Matrix Potential

Abstract: We consider the dynamical system with boundary control for the vector Schrödinger equation on
the interval with a non-self-adjoint matrix potential. For this system, we study the inverse problem
of recovering the matrix potential from the dynamical Neumann-to-Dirichlet operator. We first provide
a method to recover spectral data for the Schrödinger system. We then develop a strategy for solving
the inverse problem using this method with other techniques of the Boundary Control method. This talk
is based on joint work with Sergei Avdonin, Alexander Mikhaylov, and Victor Mikhaylov.
November 3 Belhassen Dehman
(Fac. des Sciences de Tunis, Tunisia)
Controllability of the Wave Equation on a rough compact manifold.

Abstract: The property of controllability for the wave equation has been intensively studied, mainly
in a smooth framework ( smooth metric and smooth domain ). In this lecture, I will present some results
on observability/control for the wave equation with rough coefficients.
More precisely, we prove that the property of exact internal or boundary controllability for a wave
equation with smooth coefficients is stable with respect to Lipschitz perturbations of the metric. We
also consider the case of a C^1 metric ( the hamiltonian field is only continuous) and we prove the
propagation up to the boundary of semi-classical measures support. The generalized Geometric Control
Condition is then sufficient for exact control.
This talk comes from joint works with J. Le Rousseau (Univ. Paris 13) and N. Burq (Univ. Paris Sud).
November 10
Talk 1
Kevin Le Balc'h
(U Bordeaux, France)
Exponential bounds for gradient of solutions to linear elliptic and parabolic equations.

Abstract: In this talk, I begin by introducing the Landis conjecture on exponential decay of solutions to
elliptic equations. I recall the (ongoing) story of this conjecture and its link with sharp observability
estimates for solutions to elliptic and parabolic equations. Motivated by "a dual version of the Landis
conjecture", I present new exponential bounds for gradient of solutions to elliptic and parabolic equations.
November 10
Talk 2
Jon Asier Barcena-Petisco
(U Autonoma Madrid, Spain)
Averaged dynamics and control for heat equations with random diffusion

Abstract: In this talk we deal with the averaged dynamics for heat equations in the degenerate case
where the diffusivity coefficient, assumed to be constant, is allowed to take the null value. First we
prove that the averaged dynamics is analytic. This allows to show that, most often, the averaged
dynamics enjoys the property of unique continuation and is approximately controllable. We then
determine if the averaged dynamics is actually null controllable or not depending on how the density
of averaging behaves when the diffusivity vanishes. In the critical density threshold the dynamics
of the average is similar to the 1/2-fractional Laplacian, which is well-known to be critical in the
context of the controllability of fractional diffusion processes. Null controllability then fails (resp.
holds) when the density weights more (resp. less) in the null diffusivity regime than in this critical
This talk is based on joint work with Enrique Zuazua.
November 17 Suzanne Lenhart
(U. Tennessee, US)
Optimal control for management of aquatic population models

Abstract: Optimal control techniques of ordinary and partial differential equations will be introduced
to consider management strategies for two different aquatic populations. In the first example,
managing invasive species in rivers can be assisted by adjustment of flow rates. Control of a flow
rate in a partial differential equation model for a population in a river will be used to keep the
population from moving upstream. The second example represents a food chain on the Turkish coast of
the Black Sea. Using data from the anchovy landings in Turkey, optimal control of the harvesting
rate of the anchovy population in a system of three ordinary differential equations (anchovy,
jellyfish and zooplankton) will give management strategies.
November 24
Talk 1
Cristina Urbani
(U. Roma Tor Vergata, Italia)
A constructive algorithm for building mixing coupling potentials.
Application to bilinear control.

November 24
Talk 2
Wencel Valega Mackenzie
(U. Tennessee Knoxville, US)
Resource Allocation in an Open Ecosystem

Abstract: In this talk, we propose a reaction-diffusion population model to study the effect of resource
allocation in an ecosystem where resources are allowed to have their own dynamics in space and time.
We also formulate and solve an optimal control problem applied to the resource allocation model where
the inflow of resources is the control. The goal is to maximize the abundance of the population while
minimizing the cost of inflow resource allocation. Our model can capture habitat heterogeneity to represent
changes in the population instead of assuming the resource level remains homogeneous in the habitat. Some
numerical simulations will be shown to illustrate the dynamics of the model.
December 1 Ozkan Ozer
(Western Kentucky U, US)
Introduction of Novel PDE Models of Certain Smart Material Systems
and Diving into Related Controllability Issues

Abstract: In this talk, novel PDE models for single-layer and multi-layer smart material beam systems will
be introduced. These models mainly couple the longitudinal and/or transverse vibrations of layers with
the electro-magnetism due to Maxwell's equations and/or thermal effects. Recent results on the exact
boundary observability and controllability, stabilizability will be discussed and certain mathematical
hurdles will be addressed. Even though some of these PDE models are known to be exactly observable, their
approximations by the Finite-Element and Finite-Difference methods are not able to mimic this behavior with
respect to the discretization parameter. Recent results on the application of a filtering technique and the
issues due to the non-compact coupling between the system equations and different wave speeds through the
layers will be discussed. Finally, if the time allows, recently published Wolfram's Demonstration Projects
will be shown briefly and related future directions will be addressed.
December 8
Talk 1
Jorge Zavaleta
(UNAM, México)
Radial basis function methods with hybrid kernels applied to solve control problems.

Radial basis functions (RBFs) methods have been widely applied to several fields in science and engineering in recent years. These methods are well known for attaining an exponential rate of convergence for some kernels and are flexible in dealing with complex boundaries in several dimensions. Hybrid kernels presented by Mishra et al. (2018) have, among all the available ones used in RBFs methods, the advantage of simultaneously maintaining a good condition number of the Gram matrices while preserving the exponential rate of convergence for the error. Also, they have been successfully applied to obtain the numerical solution of stationary and evolutionary partial differential equations using radial basis-finite differences (RBF-FD) (Mishra et al. 2019). Although the numerical stability of these methods has been studied, there are still theoretical and practical aspects to explain. In this talk, we present an overview of radial basis function methods with hybrid kernels and how they are applied to solve control problems numerically. We will show some recent results which have been obtained for solving distributed optimal control problems and null controllability of the Stokes equation via local RBF methods.
December 8
Talk 2
Lucas Machado
(IFCE, Brazil)
Some control results for Stokes equations with memory.

Stokes equations have been studied since many years and its understanding is very relevant from the mathe- matical and physical viewpoint. In this talk, we will consider the Stokes equations in the presence of an integro- differential term (integral in time and differential in space) called memory term. We will study the boundary null controllability problem (to steer the flow to the rest at an arbitrarily small time) for the Stokes equations with memory in the two and three dimensional cases. Precisely, we will construct explicitly initial conditions such that the null controllability does not hold even if the controls act on the whole boundary. Moreover, we also prove that this negative result holds for distributed controls. Finally, we will present some issues which remain open.
Joint work with Enrique Fernández-Cara (University of Sevilla) and Diego A. Souza (University of Sevilla).
December 15 Julie Valein
(U Lorraine, France)
Some results about the stability and the controllability of the KdV equation

In this talk, I present some recent results about the Korteweg-de Vries equation obtained with Lucie Baudouin (LAAS, Toulouse), Eduardo Cerpa (Pontificia Univ. Catolica de Chile) and Emmanuelle Crépeau (Univ. Grenoble Alpes). First, we show the robustness of the exponential stability of the KdV equation with respect to the delay in the boundary or the internal feedbacks, and we show that the behavior is not the same in the two situations. Then we study the boundary controllability of the KdV equation on a tree network.
January 7
Talk 1
Kuntal Bhandari
(U. Toulouse, France)
Boundary controllability of some 1-D coupled parabolic systems with Kirchhoff condition.

Abstract: In this presentation, we talk about the 1-D boundary controllability results of some 2x2 parabolic
systems with both the interior and boundary couplings: the interior coupling is chosen to be linear while
the boundary one is considered by means of a Kirchhoff condition at one end of the domain (0,1). The control
is exerted on one of the two state components through the Dirichlet boundary condition at the other end of
(0,1). In particular, we show that the controllability properties change depending on which component of the
system the control is being applied. Regarding this, we point out that the choices of interior coupling
coefficient and the Kirchhoff parameter play a crucial role to deduce the positive or negative controllability
results. To this end, we also prescribe controllability/ non-controllability results of some 3x3 coupled
systems also with Kirchhoff condition and only one boundary control.
January 7
Talk 2
Rogelio Ortigosa
(Cartagena, Spain)
Computational design and optimization of electrode meso-arquitecture for shape morphing dielectric elastomers.

Abstract: In this talk we introduce a novel computational framework for the in silico analysis and optimisation
of the electrode meso-arquitecture of shape morphing Dielectric Elastomers (DEs). This contribution is deeply
inspired in its conception by the work by Clarke (Clarke Lab in Harvard), who proposed a novel technology
based on a layer-by-layer fabrication of elastomers sheets and electrodes to generate variable strain along the
thickness with the aim of attaining a morphology or curvature changes that conventional electrode layouts are
far from accomplishing. Based on this work, we explore the design of shape morphing DEs from a numerical standpoint,
showcasing the convenience of topology optimisation as an extremely useful assistance tool to experienced researchers
for the design of new DE devices characterised by non-intuitive electrode layouts outperforming conventional DE
designs. From the numerical standpoint, the main ingredients and novelties of this work are: (i) Consideration of the
phase-field method for the implicit definition of the electrodes placed at surface regions, which entails the definition
of surface-restricted phase-field functions; (ii) Extension of the surface-restricted phase-field functions to the volume
of the DE in order to embed the effect of the presence or absence of electrodes within the Helmholtz's energy functional
of the DE; (iii) Original energy interpolation scheme of the Helmholtz's energy functional where only the electromechanical
contribution is affected by the extended phase-field function; (iv) Consideration of Allen-Cahn type evolution laws for
the surface-restricted phase-field functions, adapted to the current multiphysics setting; (v) A series of numerical
examples are included in order to assess the applicability of the proposed methodology.
January 14 Nicolas Burq
(U Paris Sud, France)
Propagation of smallness and control for heat equations.

Abstract: In this talk I will present some results on the propagation of smallness properties for solutions to heat equations. I will consider spectral projector estimates for the Laplace operator with Dirichlet or Neumann boundary conditions on a Riemanian manifold with or without boundary and on $R^d$. I will show that using as a black box the new approach for the propagation of smallness from Logunov-Malinnikova allows to extend the spectral projector type estimates from Jerison-Lebeau from localisation on open set to localisation on arbitrary sets of non zero Lebesgue measure; I will actually go beyond and consider sets of non vanishing $d- \delta$, ($ \delta >0$ small enough) Hausdorf measure. I will show that these new spectral projector estimates allow to extend the Logunov-Malinnikova's propagation of smallness results to solutions to heat equations. Finally I will apply these results to the null controlability of heat equations with controls localised on sets of positive Lebesgue measure. A main novelty here with respect to previous results is that we can drop previous the constant coefficient assumptions of the Laplace operator (or analyticity assumption) and deal with Lipschitz coefficients. Another important novelty is that we get the first (non one dimensional) exact controlability results with controls supported on zero measure sets and at discrete times.
This is a joint work with I. Moyano (université de Nice).
January 21
Talk 1
Denilson Menezes
(U.F. Fluminense, Brazil)
On equilibria for generalized Boussinesq fluid-chemical models with multiplicative controls

Abstract: We investigate equilibria for multi-objective optimal control problems in a model of
fluid-chemical interactions. The action of the controls occurs multiplicatively, a pertinent
assumption for certain practical circumstances, e.g., the study of ocean pollution control.
For a single agent, we provide a characterization of the Pareto front in terms of a suitable
class of minimization problems, each of which being equivalent to solving an optimality system.
In the multi-agent competitive setting, each agent seeks to minimize her performance criteria
to attain Pareto optimality, and we investigate Nash equilibria in this context. We derive and
analyze the resulting optimality system in the latter framework.
January 21
Talk 2
Mihai Nechita
(INRIA Paris)
Unique continuation problems and stabilised finite element methods

Abstract: We consider the unique continuation problem for elliptic PDEs with data given in an interior subset of the domain. This is an ill-posed problem that arises often in inverse problems and control theory.
We focus on the Helmholtz and the convection-diffusion equations and present first conditional stability estimates that are explicit in the physical parameters. Under a geometric convexity assumption, we show that for the Helmholtz equation the stability constants grow at most linearly in the wave number.
We then discuss a finite element method based on a discretise-then-regularise approach. We cast the problem into PDE-constrained optimisation with discrete regularisation inspired from stabilised FEM. Our focus is on the interior penalty stabilisation. Convergence rates are obtained by applying the continuum stability estimates to the approximation error and controlling the residual through stabilisation. For convection-dominated problems, we obtain sharper weighted error estimates along the characteristics of the convective field through the data region.
The results are illustrated by numerical examples. This is joint work with Erik Burman and Lauri Oksanen.
January 28 Lauri Oksanen
(University College London)
Spacetime finite element methods for control problems subject to the wave equation

Abstract: We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the control function given by the computational method. The proofs are based on the regularity properties of the control function given by the Hilbert Uniqueness Method, together with the stability properties of the numerical scheme. The talk is based on joint work with Erik Burman, Ali Feizmohammadi and Arnaud Münch.
February 4
Talk 1
Cristobal Merono
(Madrid, Spain)
The fixed angle scattering problem with a first order perturbation

In this talk we present recent results on the inverse scattering problem for the Schrödinger equation that consists in determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by 2n measurements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
February 4
Talk 2
Shengquan Xiang
(EPFL, Switzerland)
Quantitative rapid and finite time stabilization of the heat equation

The finite time stabilization of the 1D heat equation was proved by Coron-Nguyen (2015) via backstepping, while the multidimensional cases remained open. Inspired by Coron-Trélat's Lyapunov approach (2004) we construct explicit stationary feedback laws that quantitatively rapidly stabilize the heat equation, where the spectral inequality of Lebeau-Robbiano type (1995) is naturally adapted. Next we construct explicit controls leading to the null controllability sharing optimal costs $e^{C/T}$, and further prove the finite time stabilization. We also talk about the stabilization of Navier-Stokes equations.
February 11 Rafael Vazquez
(U Sevilla, Spain)
Backstepping for PDEs: fundamentals and some recent results

In this talk, I will start by reviewing the backstepping method for boundary control of Partial Differential Equations (PDEs), its main ingredients (selection of a judicious target system, use of an invertible integral transformation, solution of the corresponding kernel equations) and in particular its usefulness for coupled parabolic and hyperbolic systems. The rest of the talk is then devoted to some recent results on a few topics: the Rijke tube, modelled by coupled hyperbolic PDEs and ODEs, where some preliminary experimental results are available; extensions to n-dimensional parabolic systems, which present challenges for backstepping since it is not clear how to pose the system transformation; and coupled parabolic-hyperbolic systems, for which few results are available due to the difficulty in finding the right target system and transformation. These results have been obtained in collaborations with several authors, including M. Krstic, G. A. de Andrade, J. Zang, G. Chen, and others, which will be credited during the talk.
February 18
Talk 1
Christophe Zhang
(U Erlangen, Germany)
Stabilization of controllable systems: application to the water tank

In this talk, we show how the ideas of backstepping for PDEs can be combined with the notions of system equivalence and pole-shifting to stabilize some controllable systems. This can be thought of as a variant of backstepping for internal distributed controls, which uses a Fredholm-like transformation instead of the "usual" Volterra transformation of the second kind. This strategy of proof was already used to stabilize the linearized bilinear Schrödinger equation. It can be adapted to stabilize the 1-D linear transport equation. The contrasting spectral properties of these systems lead to very different technical developments. We will focus in particular on the stabilization of a 1-D water tank. It can be shown, using a moments method with some sharp estimates, that the linearized systems around non-uniform steady states are controllable in Sobolev spaces (up to conservation of mass). We use this partial controllability result to construct exponentially stabilizing feedbacks for the linearized water-tank system around non-uniform steady states. This shows that the method can be adapted to more complex hyperbolic systems, despite the additional difficulties due to the coupling terms, and the conservation of mass.
February 18
Talk 2
Cyril Letrouit
(ENS Paris)
Exact controllability properties of subelliptic wave and Schrödinger equations

We present several results concerning exact controllability and observability properties of subelliptic PDEs, i.e., PDEs driven by a subelliptic Laplacian. Our first result is that subelliptic wave equations are never controllable/observable. Then, considering various families of subelliptic operators, we explain that subelliptic Schrödinger-type equations can be controllable in any time, or never controllable, or controllable only for sufficiently large time. This last part was done in collaboration with Chenmin Sun and Clotilde Fermanian Kammerer. The tools used in this presentation come from various fields: sub-Riemannian geometry, semi-classical analysis, spectral theory and non-commutative harmonic analysis.
February 25 Irena Lasiecka
(U Memphis, US)
Control of a third order in time dynamics governing nonlinear acoustic waves - a view from the boundary.

March 4
Talk 1
Yacine Mokhtari
(Besancon, France)
March 4
Talk 2
Thomas Ian Ashley
March 11 Fredi Tröltzsch
(TU Berlin, Germany)
On Optimal Control Problems with Controls Appearing Nonlinearly in an Elliptic State Equation

An optimal control problem for a semilinear elliptic equation is discussed, where the control appears nonlinearly in the state equation but is not included in the objective functional. This feature needs a special treatment that is addressed in this talk. We prove the existence of optimal controls by a measurable selection technique and present two types of second-order sufficient optimality conditions. A first theorem invokes a well-known assumption on the set of zeros of the switching function. A second relies on coercivity of the second derivative of the reduced objective functional. The theory is complemented by associated examples. Moreover, it is applied to the convergence of optimal state functions under a finite element discretization of the control problem.
This is a joint work with Eduardo Casas (Santander).
March 18
Talk 1
Constantinos Kitsos
(Toulouse, France)
March 18
Talk 2
Exequiel Mallea Zepeda
(Tarapaca, Chile)
Optimal control problems related to chemo-repulsion systems.

In this talk we present bilinear optimal control problems related to chemo-repulsion systems with linear and superlinear production terms in the 2D case and linear in the 3D case. We establish results on existence of global optimal solutions and derive the respective optimality systems, based on a result of the existence of Lagrange multipliers in Banach spaces. Finally, we analyze the main differences (and difficulties) between the 2D and 3D cases.
March 25 Assia Benabdallah
(Marseille, France)
April 8
Talk 1
Armand Koenig
(Paris, France)
April 8
Talk 2
Thibault Liard
(Nantes, France)
April 15 Daniel Faraco
(U. Chile, Santiago, Chile)
April 22
Talk 1
Mohammad Akil
(Besançon, France)
April 22
Talk 2
Swann Marx
(Nantes, France)
One-dimensional wave equation with set-valued damping: well-posedness, asymptotic stability, and decay rates.

Abstract: In this presentation, the focus will be on a one-dimensional wave equation with a set-valued boundary damping. This (general) framework allows to consider nonlinear dampings such as saturations (i.e. nonlinearities modeling amplitude constraints) or dry dampings (a nonlinearity given by a sign function). The approach that will be presented consists in transforming the one-dimensional wave equation as a scalar discrete nonlinear differential inclusion. It is a general approach that could be applied on more general systems. It allows to obtain several results: a necessary and sufficient condition for the well-posedness; asymptotic stability in L^p type functional spaces; optimality of decay rates. The well-posedness result and some asymptotic stability results will be presented during the presentation. It is a joint work with Yacine Chitour and Guilherme Mazanti.
April 29 Axel Osses
(U. Chile, Santiago, Chile)
May 6
Talk 1
Lina Guan
(Grenoble, France)
May 27 Delphine Bresch-Pietri
(Mines Paristech, Paris)
June 10 Larisa Beilina
(Chalmers, Sweden)
Finite element analysis of an inverse problem for Maxwell's equations with application to microwave thermometry

We will present an adaptive finite element method for solution of an inverse problem for Maxwell's equations in conductive media where the goal is to determine the complex dielectric permittivity function. We derive a posteriori error estimates in the functional to be minimized and in the regularized solution to this functional, and formulate corresponding adaptive algorithms. Balancing principle for optimal choice of the regularization parameter will be presented. Finally, numerical experiments will show the efficiency of a posteriori estimates applied to data measured in microwave thermometry for real-time monitoring of tumour during microwave hyperthermia process.
June 24 Franck Boyer
(Toulouse, France)

  • Next free slots:

  • Organizers:
    Luz de Teresa UNAM México / Universidade Federal da Paraíba, Brasil.
    Sylvain Ervedoza Université de Bordeaux / CNRS.
    Enrique Fernández Cara Universidad de Sevilla, España.
    Alberto Mercado Saucedo UTFSM, Valparaíso Chile.